

WHAT KINDS OF THINGS ARE WE TRYING TO WORK OUT?

WORKING OUT? CLASS FICATION OR REGRESSION

J M

DATA

Which dataset do

you want to use?

Ratio of training to

test data: 50%

Batch size: 10

Noise: 0

Epoch 000,000

6

 \sim

PART III: IN A NETWORK

Learning to map input to output — Architectures — RNN

- **Binary Threshold Neuron**
- Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate Regularisation

CNN

And beyond...

@KATHARINECODES

PART E NEURONS

PART III: In a network

Linear Neuron

- Binary Threshold Neuron
- Logistic/sigmoid Neuron

Cost functions

Training Gradient descent Learning rate Regularisation

CNN ectures —— RNN

And beyond...

IMAGE CREDIT: SEBASTIAN KAULITZKI

QUESTION

HOW MANY NEURONS ARE THERE IN THE HUMAN BRAIN?

86-100 BILLION

DR SUZANA HERCULANO-HOUZEL

(https://www.theguardian.com/science/blog/2012/ feb/28/how-many-neurons-human-brain)

CC 2.0 LICENSE – KEVEN LAW FROM LOS ANGELES, USA

DISCLAIMER: NOT A BABOON

SYNAPSES ADAPT

• Receive more

Send more

NEURONS ARE...

Fundamental units of the brain (....or are they?)

Work together in a **modular** brain

Connections between them (synapses) can adapt

Biological Neurons

MATHS REQUIRED

DIFFICULTY

Fundamental units

Work together in modular brain

SHOULD IT BE THE SVALESTUNI

SANTIAGO RAMÓN Y Cajal

CAMILLO GOLGI

1906 NOBEL PRIZE FOR MEDICINE AND PHYSIOLOGY

Santiago Ramón y Cajal

1943 Warren McCulloch and Walter Pitts

'A logical calculus of the ideas immanent in nervous activity'

1943 Warren McCulloch and Walter Pitts

'A logical calculus of the ideas immanent in nervous activity'

1960 Frank Rosenblatt

Mark I Perceptron
"IT IS NOT MY AIM TO SURPRISE OR SHOCK YOU – BUT THE SIMPLEST WAY I CAN SUMMARISE IS TO SAY THAT THERE ARE NOW IN THE WORLD MACHINES THAT THINK, THAT LEARN AND THAT CREATE. MOREOVER, THEIR ABILITY TO DO THESE THINGS IS GOING TO INCREASE RAPIDLY UNTIL – IN A VISIBLE FUTURE – THE RANGE OF PROBLEMS THEY CAN HANDLE WILL BE COEXTENSIVE WITH THE RANGE TO WHICH THE HUMAN MIND HAS BEEN APPLIED."

Herbert Simon in 1957

QUESTION

WHO IS THIS MAN?

'A logical calculus of the ideas immanent in nervous activity'

1960 Frank Rosenblatt

Mark I Perceptron

'A logical calculus of the ideas immanent in nervous activity'

Seymour Papert

'Perceptrons'

1960 Frank Rosenblatt

Mark I Perceptron

'A logical calculus of the ideas immanent in nervous activity'

Seymour Papert

'Perceptrons'

1960 Frank Rosenblatt

Mark I Perceptron

1986 David E. Rumelhart, Geoffrey Hinton & Ronald Williams

'Learning representations by backpropagating errors'

'A logical calculus of the ideas immanent in nervous activity'

'Perceptrons'

1960 Frank Rosenblatt

Mark I Perceptron

1986 David E. Rumelhart, Geoffrey Hinton & Ronald Williams

'Learning representations by backpropagating errors'

THE NEURON DOCTRINE PROVIDED A STRONG **ANALYTICAL APPROACH IN THE PAST, BUT CAN NO** LONGER BE SEEN AS CENTRAL TO CONTEMPORARY **ADVANCES IN NEUROSCIENCE. R. W. GUILLERY**

Observations of synaptic structures: origins of the neuron doctrine and its current status <u>Philos Trans R Soc Lond B Biol Sci</u>. 2005 Jun 29; 360(1458): 1281–1307

The Neuron Doctrine

MATHS REQUIRED

DIFFICULTY

To understand brain, smallest unit is the neuron

WHY IS EVERYONE EXCITED ABOUT NEURONS

🔍 🗧 🕇 Henry Markram: A brain in a su 🗙

C Secure https://www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets

Ideas worth spreading

Henry Markram at TEDGlobal 2009

A brain in a supercomputer

Details About the talk

 \leftarrow

Transcript 28 languages Comments Join the conversation

Henry Markram says the mysteries of the mind can be solved -- soon. Mental illness, memory, perception: they're made of neurons and electric signals, and he plans to find them with a supercomputer that models all the brain's 100,000,000,000,000

www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets#

QUESTION

WHAT IS THE ANSWER TO THIS QUESTION?

9837 x 1218

QUESTION

WHAT KIND OF ANIMAL IS THIS?

BIOLOGICAL TO ARTIFICIAL

PART III: IN A NETWORK

Learning to map input to output — Architectures — RNN

- **Binary Threshold Neuron**
- Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate Regularisation

CNN

And beyond...

LINEAR NEURONS

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron

Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

QUESTION

WHAT KIND OF FUNCTION IS THIS? (EXPONENTIAL, QUADRATIC..?)

(x × 2) + 2

K K (x×w)+b

x <u>2</u>

(x × 2) + 2

$$\sum_{i=0}^{n} Sci\theta_{i}$$

$$\sum_{i=0}^{n} Sci\theta_{i}$$

$$\sum_{i=0}^{n} Sc_{i}\theta_{i}$$

JCIWITP

WEIGHTS ADAPT

Weight is large (3x): bigger input Weight is small (0.0003x): smaller input

What can I do?

QUESTION!

WHAT SHOULD THE Y-INTERCEPT BE?

QUESTION!

WHAT SHOULD THE GRADIENT BE?

LINEAR NEURONS

Networks of linear neurons give a linear output Sometimes called the identity activation function Go to http://playground.tensorflow.org/ Select the first data set Make the 'activation' linear Can you separate the data?

larger.

Θ Problem type Regularization rate Classification 0 OUTPUT

> Test loss 0.525 Training loss 0.498

MATHS REDUIRED

Linear Neurons

MATHS REQUIRED

DIFFICULTY

Output is the sum of the inputs * weights, which gives a linear output

BINARY THRESHOLD NEURONS

PART III: IN A NETWORK

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron

Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

IMAGE CREDIT: SEBASTIAN KAULITZKI

BINARY THRESHOLD NEURONS

Output is either 0 and 1 Similar limitation to linear. Can you solve XOR with binary threshold neurons? Why not?

Binary Threshold Neurons

MATHS REQUIRED

DIFFICULTY

Output 1 if input is over a threshold, or 0 otherwise

NEURONS

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

 $\mathbf{X}_{\mathbf{i}}$ ω_{l} w_{L} X دلما С Υ -

What can I do?

LOGISTIC NEURONS

Real valued output between 0 and 1 Can map non-linear functions Go to <u>http://playground.tensorflow.org/</u> Select the first data set Make the 'activation' sigmoid Can you separate the data?

WHAT KIND PROBLEMS CAN THE LOGISTIC NEURON SOLVE?

NATHS REDUIRED

DIFFICILIY Q

Logistic Neurons

MATHS REQUIRED

DIFFICULTY

Output is between 1 and 0

RECTIFIED LINEAR NEURONS

PART III: IN A NETWORK

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

 $\mathbf{X}_{\mathbf{i}}$ 、し \mathbf{X}_{i} $\mathbf{\omega}$ **U** X $\boldsymbol{\omega}$ y = max(0, Z)

 $\mathbf{X}_{\mathbf{i}}$ 、し \mathbf{X}_{i} $\mathbf{\omega}$ **U** X $\boldsymbol{\omega}$ y = max(0, Z)

What can I do?

RECTIFIED NEURONS

Real valued output between 0 and infinity Can map non-linear functions - and fast Go to <u>http://playground.tensorflow.org/</u> Select the first data set Make the 'activation' ReLU

Compare the speed to the speed using sigmoid

Rectified Linear Neurons

MATHS REQUIRED

DIFFICULTY

Output is linear if input is greater than 0, or 0 otherwise

PART III: IN A NETWORK

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

x, O \mathbf{X}_{i} $\mathbf{X}_{\mathbf{y}}$ ω_{γ} $z = x_1 \omega_1 + x_2 \omega_2 + x_3 \omega_3$ $y = \frac{e^{7} e^{-7}}{e^{7} e^{-7}}$

What can I do?

TANH NEURONS

Real valued output between -1 and 1 Like sigmoid.... But faster Go to <u>http://playground.tensorflow.org/</u> Select the first data set Make the 'activation' Tanh Compare the speed to the speed using sigmoid

TANH NEURONS

Real valued output between -1 and 1 Like sigmoid.... But faster Go to http://playground.tensorflow.org/ Select the first data set Make the 'activation' Tanh Compare the speed to the speed using sigmoid

MATHS REQUIRED

DIFFICULTY

Tanh Neurons

Output is between -1 and 1

PART III: **IN A NETWORK**

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

@KATHARINECODES

PART II: LEARNING

EARNING IN A SIMPLE NETWORK

PART III: **IN A NETWORK**

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

And beyond...

HOW MANY LAYERS DOES THIS NETWORK HAVE?

PART III: **IN A NETWORK**

CNN Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

And beyond...

HOW MANY LAYERS DOES THIS NETWORK HAVE?

 $Z = \alpha_1 w_1^2 + \alpha_2 w_2^2 + \alpha_3 w_3^2 + \alpha_4 w_4^2 + \alpha_5 w_5^2$

+ e⁻²

	1.00 -
	0.75 -
Data	0.50 -
100 data points	0.25 -
Inputs are between -3 and 3	> 0.00 -
Output is a function y = cos(X + random noise)	-0.25 -
Network	-0.50 -
2 hidden layers, each with 5 hidden units	-0.75 -
Logistic activation function	-1.00 -
	-
	☆ ← →

Figure 1

MATHS REQUIRED

DIFFICULTY

Move forwards through network to get the output

Feed Forward

COST FUNCTIONS

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate

Regularisation

CNN

THE COST OF A NETWORK: COST FUNCTION

- What is the discrepancy between what the network output, and what the 'real' answer is?
- Different ways to calculate this depending on the data:
 - For a real valued output, might use the mean squared error
 - For a probability distribution, might use softmax

'Hidden layer'

Input layer

ha (JC

٨ 2 h(x) 4, 2m 1=0

y=1 (ost = -log(h(><)) y=0 (ost = -log(1-h(x)) $\frac{1}{2} \sum \left(ost(h(x), y) \right)$ m

BACK PROPAGATION

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate Regularisation

CNN

GRADIENT DESCENT

We want the lowest cost function for the weights.

BACK PROPAGATION

- Having made a forward pass through the network,
- And for each output unit, worked out how changing the output changes the cost...
- For the previous layer, work out how changing the input to the layer changes the output
- For the weight on the incoming connections to that layer, work out how changing the weight changes the cost
- Work backwards!

Back Propagation

MATHS REQUIRED

DIFFICULTY

00000 ×O Feed Forward MATHS REQUIRED DIFFICULTY Move forwards through network to get the output

Determine how the weights in the network affect the error

Gradient descent **Training** Learning rate Regularisation CNN Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Randomly initialise weights Per example: Forward pass through the network Calculate the cost/error Backward pass to get the error derivatives Run gradient descent

Gradient descent Training Learning rate Regularisation CNN Learning to map input to output — Architectures — RNN

Binary Threshold Neuron

Cost functions

Randomly initialise weights Per example: Forward pass through the network Calculate the cost/error Backward pass to get the error derivatives Run gradient descent

QUESTION!

WHEN SHOULD GRADIENT DESCENT BE RUN?

Online

Mini-batch gradient descent

I DON'T WANT TO IMPLEMENT GRADIENT DESCENT

Tensorflow Deep Learning 4 J

Gradient Descent

MATHS REQUIRED

DIFFICULTY

Linea	ar Regresion								
2.0 Learning R	2.0 Learning Rate α (scaled)		$J(heta) = rac{1}{2m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)}ig)^2$						
		Cost is 5117	7.70						
	5,500	Ho	w Ө1 с	hanges	s the	Cost			
	5,000							0	
0	4,500								
	4,000								
	3,500								
	000,6 S								
	2,500								
	2,000								
	1,500								
	1,000								
	500								
150 175	200 0.0	0.1 0.2	0.3 ().4 0.5	0.6 01	0.7 0.8	0.9	1.0	1.1
sion				0 01					

Reduce the weights in proportion to the gradients

THE LEARNING

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate Regularisation

CNN

QUESTION!

WHAT IF THE LEARNING RATE IS TOO HIGH?

QUESTION!

WHAT IF THE LEARNING RATE IS TOO LOW?

$\sim -$	
L O G	18 -
	16 -
Data	14 -
100 data points	12 -
Inputs are between 0 and 5	> 10 -
Output is a function y = 3X + 2 + random noise	8 -
Network	6 -
1 hidden layers, with 1 hidden unit	4 -
Linear/identity activation function	2 -

Figure 1

Linear Regression with learning rate 0.1

The Learning Rate

MATHS REQUIRED

DIFFICULTY

UNDERFITING

REASONS FOR UNDERFITTING

Network is too simple! Try more hidden units Try more hidden layers Activation function is not suitable! Are you using linear activation function? Or binary threshold? Or... perceptrons?

Underfitting

MATHS REQUIRED

DIFFICULTY

Predictions don't fit the data well enough

REASONS FOR OVERFITTING

- Haven't trained the network properly
 - number of hidden units, layers, etc.
- Get more data
- Network is 'too complicated': get perfect architecture
- Average different models (bagging), early stopping,...
- Too complicated? Try...

Don't train on all the data, hold back a chunk to check your hyperparameters (a cross-validation set) like learning rate,

Hold back another chunk to test the final configuration (a test-set)

Overfitting

MATHS REQUIRED

DIFFICULTY

Prediction fits the data too well

REGULARISATION

PART III: **IN A NETWORK**

Learning to map input to output — Architectures — RNN

Binary Threshold Neuron Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate **Regularisation**

CNN

And beyond...

size
bedrooms
garage?

lawn?

Q

OR – REDUCING NOISE

Ways, during training, to reduce some of the weights. L1 regularisation L2 regularisation

Regularisation

MATHS REQUIRED

DIFFICULTY

Reduce overfitting with weight penalties

enough

Learning to map input to output — Architectures — RNN

IN A NETWORK

Binary Threshold Neuron

- Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate Regularisation

And beyond...

DEEP LEARNING 4 J

...into a record reader

Convert to array and preprocess

NAGray

Configure model Data

I New Data

@KATHARINECODES

PART II. NETWORKS

PART III: **IN A NETWORK**

And beyond...

And beyond...

DATA, DATA, EVERYWHERE....

Feature selection

Normalising and standardising data

Dimensionality reduction

FILTERS AND WRAPPERS

Filters look at each feature in isolation Wrappers look at how groups of features perform in a classifier

QUESTION

WHICH IS FASTER? FILTERS OR WRAPPERS?

DATA, DATA, EVERYWHERE....

Feature selection

Normalising and standardising data

Dimensionality reduction

DATA, DATA, EVERYWHERE....

Feature selection

Normalising and standardising data

Dimensionality reduction

THE DARK SIDE

DEEP LEARNING 4 J

ARCHITECTURES

Data goes forwards

Architectures

Recurrent

Data goes forwards... and backwards

Data goes forwards

Autoencoder

Architectures

Recurrent

Data goes forwards... and backwards

Data goes forwards

Autoencoder

Convolutional

Architectures

Recurrent

Data goes forwards... and backwards

Data goes forwards

Autoencoder

Convolutional

Architectures

Recurrent

Data goes forwards... and backwards

Hopfield Nets

Data goes forwards

Autoencoder

Convolutional

Architectures

Recurrent

Data goes forwards... and backwards

Hopfield Nets

Echo state

Data goes forwards

Autoencoder

Convolutional

Recurrent

Data goes forwards... and backwards

Hopfield Nets

Echo state

Long term short term

Architectures

Data goes forwards

Autoencoder

Convolutional

Recurrent

Data goes forwards... and backwards

Hopfield Nets

Echo state

Long term short term

Architectures

Memory

Data goes forwards

Autoencoder

Convolutional

Spiking

Recurrent

Data goes forwards... and backwards

Hopfield Nets

Echo state

Long term short term

Architectures

Memory

Binary Threshold Neuron

- Logistic/sigmoid Neuron

Cost functions

Gradient descent Training Learning rate Regularisation

CNN

-Architectures RNN

And beyond...

CNNS – EXAMPLE

Input an image (e.g. 32x32x3) Convolutional layer ReLU layer Pool layer

Fully connected layer

CNNS – EXAMPLE

Input an image (e.g. 32x32x3) Convolutional layer ReLU layer Pool layer Fully connected layer

- What do we want? Some ki task domain.
- Trying to learn representati represent.
- Internal representations

What do we want? Some kind of internal structure, for the

Trying to learn representations. Deciding what units should

And beyond...

Learn from the present, and the past Said to have memory

Binary Threshold Neuron

- Logistic/sigmoid Neuron

Cost functions

Training ——	Gradient descent
	Learning rate
	Regularisation

CNN RNN

And beyond...

LEARNING PATHS

GENERAL MACHINE LEARNING: START WITH ANDREW NG (STANFORD ONLINE) ON COURSERA

NEURAL NETWORKS: START WITH GEOFFREY HINTON (UNIVERSITY OF TORONTO) ON COURSERA WARNING: CONTAINS MATHS

https://katharinecodes.wordpress.com/2017/08/31/ machine-learning-journey-before-the-masters/

Quadratics

Quadratics

Differentiation

Quadratics

Differentiation

DO I NEED MATHS?

Partial differentiation

Quadratics

Differentiation

DO I NEED MATHS?

Partial differentiation

Logaritms

Quadratics

Differentiation

DO I NEED MATHS?

Partial differentiation

Logaritms

Matrices

Quadratics

Differentiation

DO I NEED MATHS?

Partial differentiation

Logaritms

Matrices

Exponentials

Quadratics

Differentiation

DO I NEED MATHS?

Partial differentiation

Logaritms

Matrices

Exponentials

Quadratics

Differentiation

Partial differentiation

Logaritms

Matrices

Distance measures

DOINEED MATHS?

Exponentials

Quadratics

Differentiation

Partial differentiation

Logaritms

Matrices

Distance measures

DOINEED MATHS?

Exponentials

Eigen vectors

Quadratics

Differentiation

Partial differentiation

Logaritms

Matrices

Distance measures

Probability

DOINEED MATHS?

Exponentials

Eigen vectors

Quadratics

Differentiation

Partial differentiation

Logaritms

Matrices

Distance measures

Probability

DOINEED MATHS?

Hessian matrices

Exponentials

Eigen vectors

Quadratics

Differentiation

Partial differentiation

Logaritms

Matrices

Bayes Theorem

Distance measures

Probability

DO I NEED MATHS?

Hessian matrices

Exponentials

Eigen vectors

T PROGRAMMING GUAGE IS BEST?

Epoch e = New Epoch(); try . e play();

ΠpnBit → x WHAT SHOULD MY DATA LOOK LIKE?

