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QUESTION TIME!

WHAT KINDS OF THINGS ARE WE TRYING TO WORK QUT?




WHAI ARE WE
WORKING OUT?
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PART I: NEURONS



WHAT IS A
NEURON
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QUESTION

HOW MANY NEURONS ARE THERE IN THE HUMAN BRAIN?




HOW MANY?

(https://www.theguardian.com/science/blog/2012/
feb/28/how-many-neurons-human-brain)


https://www.theguardian.com/science/blog/2012/feb/28/how-many-neurons-human-brain
https://www.theguardian.com/science/blog/2012/feb/28/how-many-neurons-human-brain

DISCLAIMER: NOT A BABOON

CC 2.0 LICENSE - KEVEN LAW FROM LOS ANGELES, USA


http://www.flickr.com/people/66164549@N00
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SYNAPSES ADAPT

@ Send more

® Receive more



NEURONS ARE...

» Fundamental units of the brain (....or are
they?)

» Work together in a modular brain

» Connections between them (synapses) can
adapt
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Fundamental units

Work together in modular brain




SHOULD IT BE THE
SMALLEST UNIT
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1943 Warren McCulloch and
Walter Pitts

‘A logical calculus of the
ideas immanent in nervous
activity’
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‘A logical calculus of the
ideas immanent in nervous
activity’ 1960 Frank Rosenblatt

I
Mark | Perceptron




A WHOLE LOT OF HYPE

Herbert Simon in 1957



QUESTION

WHO IS THIS MAN?
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‘Perceptrons’

‘Learning representations by back-
propagating errors’
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BEYOND THE NEURON DOCTRINE?

Observations of synaptic structures: origins of the neuron doctrine and its
current status

Philos Trans R Soc Lond B Biol Sci. 2005 Jun 29; 360(1458): 1281-1307



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569502/#
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Biological Neurons
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To understand brain, smallest unit is
the neuron




WHY IS EVERYONE
EXCITED ABOUT NEURONS
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QUESTION

WHAT IS THE ANSWER TO THIS QUESTION?




0837 x 1218



QUESTION

WHAT KIND OF ANIMAL IS THIS?
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QUESTION

WHAT KIND OF FUNCTION IS THIS? (EXPONENTIAL, QUADRATIC..?)













BIAS?
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WEIGHTS ADAPT

e Weightis large (3x): bigger input

® Weight is small (0.0003x): smaller input



What can | do?




QUESTION!

WHAT SHOULD THE Y-INTERCEPT BE?




QUESTION!

WHAT SHOULD THE GRADIENT BE?




LINEAR NEURONS

» Networks of linear neurons give a linear output
» Sometimes called the identity activation function

» Go to http://playground.tensorflow.org/

» Select the first data set
» Make the ‘activation’ linear

» Can you separate the data?


http://playground.tensorflow.org/

Q) @ / A Neural Network Playground % . e

< C | O playground.tensorflow.org/#activation=linear&batchSize=108&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkS... ¢

»
Tinker With a Neural Network Right Here in Your Browser.
Don't Worry, You Can't Break It. We Promise.

Epoch Learning rate Activation Regularization Regularization rate Problem type

OO0,000 0.03 Linear None 0 Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.525
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Linear Neurons
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Output is the sum of the inputs *
weights, which gives a linear output




BINARY THRESHOLD
NEURONS




PART I.
NEURONS

PART Il
LEARNING

PART II:
IN A NETWORK

Biological

/
\

Neurons

Artificial

Linear Neuron

Binary Threshold Neuron

Logistic/sigmoid Neuron

reLU
Tanh

Feed forward

/

Network

Back propagation

Architectures

Learning to map input to output

Training —

Cost functions

Gradient descent
Learning rate

Regularisation

CNN
RNN
And beyond...

A
















BINARY THRESHOLD NEURONS

» Output is either 0 and 1
» Similar limitation to linear.

» Can you solve XOR with binary threshold neurons?

» Why not?
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Binary Threshold Neurons

@
@ |

Output 1 if input is over a threshold,
or 0 otherwise




LOGISTIC
NEURONS
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What can | do?




LOGISTIC NEURONS

» Real valued output between 0 and 1
» Can map non-linear functions

» Go to http://playground.tensorflow.org/

» Select the first data set
» Make the ‘activation’ sigmoid

» Can you separate the data?


http://playground.tensorflow.org/
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QUESTION 5

WHAT KIND PROBLEMS CAN THE LOGISTIC NEURON SOLVE?
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Logistic Neurons
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Output is between 1 and 0




RECTIFIED LINEAR
NEURONS
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What can | do?




RECTIFIED NEURONS

» Real valued output between 0 and infinity
» Can map non-linear functions - and fast

» Go to http://playground.tensorflow.org/

» Select the first data set
» Make the ‘activation’ RelLU

» Compare the speed to the speed using sigmoid


http://playground.tensorflow.org/
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Rectified Linear Neurons
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TANH NEURONS

» Real valued output between -1 and 1
» Like sigmoid.... But faster

» Go to http://playground.tensorflow.org/

» Select the first data set
» Make the ‘activation’ Tanh

» Compare the speed to the speed using sigmoid


http://playground.tensorflow.org/
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» Like sigmoid.... But faster

» Go to http://playground.tensorflow.org/

» Select the first data set
» Make the ‘activation’ Tanh

» Compare the speed to the speed using sigmoid
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QUESTION 7

HOW MANY LAYERS DOES THIS NETWORK HAVE?
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THE COST OF A NETWORK: COST FUNCTION

» What is the discrepancy between what the network output,
and what the ‘real’ answer is?

» Different ways to calculate this depending on the data:
» For areal valued output, might use the mean squared error

» For a probability distribution, might use softmax
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GRADIENT DESCENT
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Change in cost #{
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Change in weight

We want the lowest cost function for the weights.
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Back Propagation

Determine how the weights in the
network affect the error
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TRAINING

» Randomly initialise weights
» Per example:
» Forward pass through the network
» Calculate the cost/error
» Backward pass to get the error derivatives

» Run gradient descent



GRADIENT
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TRAINING

» Randomly initialise weights
» Per example:
» Forward pass through the network
» Calculate the cost/error
» Backward pass to get the error derivatives

» Run gradient descent



QUESTION!

WHEN SHOULD GRADIENT DESCENT BE RUN?




DIFFERENT WAYS TO DO THIS...

» Online

» Mini-batch gradient descent



| DON'T WANT TO IMPLEMENT GRADIENT DESCENT

» Tensorflow

» Deep Learning 4 J
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QUESTION!

WHAT |F THE LEARNING RATE IS TOO RIGH?




QUESTION!

WHAT |F THE LEARNING RATE IS TOO LOW?
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Data

100 data points

Inputs are between 0 and 5

Output is a function y = 3X + 2 + random noise
Network

1 hidden layers, with 1 hidden unit

Linear/identity activation function
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Figure 1

Linear Regression with learning rate 0.1
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UNDERFITTING









REASONS FOR UNDERFITTING

» Network is too simple!
» Try more hidden units
» Try more hidden layers
» Activation function is not suitable!

» Are you using linear activation function? Or binary
threshold? Or... perceptrons?
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OVERFITTING










REASONS FOR QVERFITTING

» Haven't trained the network properly

» Don’'t train on all the data, hold back a chunk to check your
hyperparameters (a cross-validation set) like learning rate,
number of hidden units, layers, etc.

» Hold back another chunk to test the final configuration (a test-set)
» Get more data
» Network is ‘too complicated’: get perfect architecture
» Average different models (bagging), early stopping,...

» Too complicated? Try...
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OR - REDUCING NOISE

» Ways, during training, to reduce some of the weights.
» L1 regularisation

» L2 regularisation
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DATA

DAIA, DATA, EVERYWHERE. . ..

» Feature selection
» Normalising and standardising data

» Dimensionality reduction



DATA

FILTERS AND WRAPPERS

» Filters look at each feature in isolation

» Wrappers look at how groups of features performin a
classifier



QUESTION

WHICH IS FASTER? FILTERS OR WRAPPERS?
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DAIA, DATA, EVERYWHERE. . ..

» Feature selection
» Normalising and standardising data

» Dimensionality reduction
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DAIA, DATA, EVERYWHERE. . ..

» Feature selection
» Normalising and standardising data

» Dimensionality reduction
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Feed Forward Recurrent

Data goes forwards Data goes forwards... and backwards

Architectures
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Data goes forwards Data goes forwards... and backwards
Autoencoder Hopfield Nets
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Convolutional Long term short term
Architectures
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Spiking
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ARCHITECTURE

CNNS - EXAMPLE

» Input an image (e.g. 32x32x3)
» Convolutional layer

» RelLU layer

» Pool layer

» Fully connected layer
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ARCHITECTURE

CNNS - EXAMPLE

» Input an image (e.g. 32x32x3)
» Convolutional layer

» RelU layer

» Pool layer

» Fully connected layer












1986: HINTON, RUMELHART, WILLIAMS

» What do we want? Some kind of internal structure, for the
task domain.

» Trying to learn representations. Deciding what units should
represent.

» Internal representations
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LEARNING PATHS




WHAT NOW?

https://katharinecodes.wordpress.com/2017/08/31/
machine-learning-journey-before-the-masters/






DO | NEED MATHS?
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