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Who’s talking?
● KTH-PDC Center for High Performance Computing (MSc thesis)
● Swedish Institute of Computer Science (distributed system test+debug tools)
● Sun Microsystems (building very large machines)
● Google (Hangouts, productivity)
● Recorded Future (natural language processing startup)
● Cinnober Financial Tech. (trading systems)
● Spotify (data processing & modelling)
● Schibsted Media Group (data processing & modelling)
● Mapflat (independent data engineering consultant)

○ ~15 clients: Spotify, 3 banks, 3 conglomerates, 4 startups, 5 *tech, misc
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Privacy protection resources
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All of this might go 
wrong. Large fine.

Pour your data into 
our product.
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Privacy by design
● Required by GDPR
● Technical scope

○ Engineering toolbox
○ Puzzle pieces - not complete solutions

● Assuming that you solve: 
○ Legal requirements
○ Security primitives
○ ...

● Disclaimers:
○ This is not a description of company X
○ This is not legal / compliance advice
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Requirements, engineer’s perspective
● Right to be forgotten
● Limited collection
● Limited retention
● Limited access

○ From employees
○ In case of security breach

● Consent for processing
● Right for explanations
● Right to correct data
● User data enumeration
● User data export
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Ancient data-centric systems
● The monolith
● All data in one place
● Analytics + online serving from 

single database
● Current state, mutable

- Please delete me?
- What data have you got on me?
- Please correct this data

- Sure, no problem!

6

DB

Presentation

Logic

Storage



Event-oriented / big data systems
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Every event All events, ever, 
raw, unprocessed

Refinement 
pipeline

Artifact of 
value



Event-oriented / big data systems
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Every event All events, ever, 
raw, unprocessed

Refinement 
pipeline

Artifact of 
value

● Motivated by
○ New types of data-driven (AI) features
○ Quicker product iterations

■ Data-driven product feedback (A/B tests)
■ Democratised data - fewer teams involved in changes

○ Robustness - scales to more complex business logic

Enable disruption



Data
lake

Data processing at scale
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Workflow orchestrator
● Dataset “build tool”
● Run job instance when

○ input is available
○ output missing
○ resources are available

● Backfill for previous failures
○ Robust system from fragile components

● DSL describes DAG
○ Includes ingress & egress

The most important big data component - it 
keeps you sane

Recommended: Luigi / Airflow
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Factors of success
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Functional architecture:
● Event-oriented - append only
● Immutability
● At-least-once semantics
● Reproducibility

○ Through 1000s of copies
● Redundancy

- Please delete me? 
- What data have you got on me?
- Please correct this data

- Hold on a second...



Solution space
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Personal information (PII) classification
You need to establish a field/dataset 
classification.  Example: 

Is application content sensitive? Depends.

● Music, video playlists - perhaps not
● Running tracks, taxi rides - apparently
● In-application messages - probably
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● Red - sensitive data
○ Messages
○ GPS location
○ Views, preferences

● Yellow - personal data
○ IDs (user, device)
○ Name, email, address
○ IP address

● Green - insensitive data
○ Not related to persons
○ Aggregated numbers

● Grey zone
○ Birth date, zip code
○ Recommendation / ads models?



PII arithmetics
● Most sensitive data wins

○ red + green = red
○ red + yellow = red
○ yellow + green = yellow

● Aggregation decreases sensitivity
○ sum(red/yellow) = green ?

● Combinations may increase sensitivity
○ green + green + green = yellow ?
○ yellow + yellow + yellow = red ?

● Machine learning models store hidden information
○ model(yellow) = yellow or green ?
○ Overfitting => persons could be identified
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Make privacy visible at ground level

Suggestions:
● In dataset names

○ hdfs://red/crm/received_messages/year=2017/month=6/day=13
○ s3://yellow/webshop/pageviews/year=2017/month=6/day=13

● In field names
○ response.y_text = “Dear ” + user.y_name + “, thanks for contacting us …”

● In credential / service / table / ... names
● In metadata

● Spreads awareness
● Catch mistakes in code review
● Enables custom tooling for violation warnings
- Difficult to change privacy level
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Eye of the needle tool
● Provide data access through gateway tool

○ Thin wrapper around Spark/Hadoop/S3/...
○ Hard-wired configuration

● Governance
○ Access audit, verification
○ Policing/retention for experiment data
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Eye of the needle tool
● Easy to do the right thing

○ Right resource choice, e.g. “allocate temporary 
cluster/storage”

○ Enforce practices, e.g. run jobs from central repository code
○ No command for data download

● Enabling for data scientists
○ Empowered without operations
○ Directory of resources
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Possible strategy: Privacy protection at ingress
Scramble on arrival

+ Simple to implement
- Limits value extraction
- Deanonymisation possible

IMHO not a feasible strategy
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Privacy protection at egress
Processing in opaque box

+ Enabling
+ Simpler to reason about
- Strict operations required
- Exploratory analytics need explicit egress / 

classification
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Permission to process
● Processing personal data requires a sanction

○ Business motive is not sufficient
● Explicit sanction

○ Consent from user
○ Necessary to perform core service

● Implicit sanction
○ Required by regulations

■ Detect money laundry, fraud, abuse
■ Bookkeeping

● Not exempt user
○ Not underage
○ Not politically exposed person
○ No hidden identity

20



● Consent applies at processing date, not collection date

class BiPageView(Task):
  date = DateParameter()

  def requires(self):
    return [PageView(self.date),
            User(self.date),
            BIConsent.latest()]   

Consent workflow
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Towards oblivion
● Left to its own devices, 

personal (PII) data spreads 
like weed

● PII data needs to be  
governed, collared, or 
discarded

○ Discard what you can
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● Discard all PII
○ User id in example

● No link between records or datasets

● Replace with non-PII
○ E.g. age, gender, country

● Still no link
○ Beware: rare combination => not anonymised

Drop user id

Discard: Anonymisation
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Replace user id with 
demographics

Useful for 
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Useful for
metrics



Partial discard: Pseudonymisation
● Hash PII
● Records are linked

○ Across datasets
○ Still PII, GDPR applies
○ Persons can be identified (with additional data)
○ Hash recoverable from PII

● Hash PII + salt
○ Hash not recoverable

● Records are still linked
○ Across datasets if salt is constant

24

Hash user id Useful for 
recommendations

Hash user id 
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Useful for product 
insights



● Push reruns with
workflow orchestrator

- No versioning support in tools
- Computationally expensive
- Easy to miss datasets
- PII in cleartext everywhere
+ No data model changes required
+ Usually necessary for egress storage

Governance: Recomputation
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● Fields reference PII table
● Clear single record => oblivion

- PII table injection needed
- Key with UUID or hash

- Extra join
- Multiple or wide PII tables
+ PII table can be well protected

Ejected record pattern
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● Datasets are immutable - must not remove records
● Version n+1 of raw dataset lacks record
● Short retention of old versions
● Always depend on latest version

○ What about changing PII, e.g. address? 
Need versioning in data model?

Record removal in pipelines
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User PII
2017-06-12

User PII
2017-06-13

class Purchases(Task):
  date = DateParameter()

  def requires(self):
    return [Users(self.date),
            Orders(self.date),
            UserPII.latest()]   



● PII fields encrypted
● Per-user decryption key table
● Clear single user key => oblivion

- Extra join + decrypt
- Requires user-defined function in SQL?

- Decryption (user) id needed
+ Multi-field oblivion
+ Single dataset leak → no PII leak
+ Handles changing PII fields

Lost key pattern

28



● Different fields encrypted
with different keys

● Partial user oblivion
○ E.g. forget my GPS coordinates

Lost key partial oblivion
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● Encrypt key fields that link datasets
● Ability to join is lost
● No data loss

○ Salt => anonymous data
○ No salt => pseudonymous data

Lost link key
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Reversible oblivion
● Lost key pattern
● Give ejected record key to third party

○ User
○ Trusted organisation

● Destroy company copies
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● Input:
○ Page view events
○ User account creations
○ User deletion requests

● Business job outputs:
○ Web daily active user count, per country
○ Duplicate display name detection → email

Example: Lost key pattern
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● Split RawNewUser
○ Encryption key
○ Non-PII + encrypted PII

Example: Lost key pattern
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● UserKey = latest user encryption keys
○ Recursive - depends on yesterday
○ Yesterday's + new - forgotten

● User = all users ever seen
○ Recursive
○ Yesterday's + new

■ grows forever
○ Encrypted PII

Example: Lost key pattern
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● Encrypt page view PII
○ Pseudonymised

● WebDau aggregation requires no PII
● UserNameDuplicate requires email for push

○ Depend on UserKey.latest for decrypting email in User
○ Egress DB should have limited retention

Example: Lost key pattern
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Tombstone line
● Produce dataset/stream of forgotten users
● Egress components, e.g. online service 

databases, may need push for removal.
○ Higher PII leak risk
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The art of deletion
● Example: Cassandra
● Deletions == tombstones
● Data remains

○ Until compaction
○ In disconnected nodes
○ ...

Component-specific expertise necessary
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Deletion layers
● Every component adds deletion burden

○ Minimise number of components
○ Ephemeral >> dedicated. Recycle machines.

● Every storage layer adds deletion burden
○ Minimise number of storage layers
○ Cloud storage requires documented erasure semantics + agreements.

● Invent simple strategies
○ Example: Cycle Cassandra machines regularly, erase block devices.

Increasing cost of heterogeneity & on premise storage.
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Data model deadly sins
● Using PII data as key

○ Username, email

● Publishing entity ids containing PII data
○ E.g. user shared resources (favourites, compilations) including username

● Publishing pseudonymised datasets
○ They can be de-pseudonymised with external data
○ E.g. AOL, Netflix, ...
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Retention limitation
● Best solved in workflow orchestration

○ Creation and destruction live together
● Short default retention

○ Whitelist exceptions with long retention
● In conflict with technical ideal of immutable raw data

40



Cluster storage Cluster storage

Lake freeze
● Remove expire raw dataset, freeze derived datasets
● Workflow DAG still works
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Cold store Derived Cold store Derived
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What about streaming?
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● Unified log - bus of all business events
○ Streams = infinite datasets

● Pipelines with stream processing jobs
○ Governance & reprocessing difficult

● Ejected record & lost key patterns work
○ PII or encryption key in database table

● Retention is naturally limited
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Correcting invalid data = human in the loop
● Humans are lousy data processors

○ Expensive to execute
○ Not completely deterministic
○ Not ready to kick off at 2 am
○ Don't read Avro very well
○ Not compatible with CI/CD
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● Add human curation to cold store
○ Pipeline job merges human curation input
○ Overrides data from other sources

Curation 
service

Human 
overrides

https://www.flickr.com/photos/jetheriot/7940994640
http://www.publicdomainpictures.net/view-image.php?image=191770&picture=woman-typing-office-computer


Lineage
● Tooling for tracking data flow
● Dataset granularity

○ Workflow manager?
● Field granularity

○ Framework instrumentation?
● Multiple use cases

○ (Discovering data)
○ (Pipeline change management)
○ Detecting dead end data flows
○ Right to export data
○ Explanation of model decisions
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Resources Credits
● https://www.slideshare.net/lallea/protecting

-privacy-in-practice
● http://www.slideshare.net/lallea/data-pipeli

nes-from-zero-to-solid
● http://www.mapflat.com/lands/resources/re

ading-list
● https://ico.org.uk/
● EU Article 29 Working Party
● ENISA: "Privacy by design in big data"
● GDPR-podden
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● Alexander Kjeldaas, independent
● Lena Sundin, independent
● Oscar Söderlund, Spotify
● Oskar Löthberg, Spotify
● Sofia Edvardsen, 

Sharp Cookie Advisors
● Øyvind Løkling, 

Schibsted Media Group
● Enno Runne, Baymarkets


