
Privacy by design

Jfokus, 2018-02-07
Lars Albertsson

www.mapflat.com
1

Who’s talking?
● KTH-PDC Center for High Performance Computing (MSc thesis)
● Swedish Institute of Computer Science (distributed system test+debug tools)
● Sun Microsystems (building very large machines)
● Google (Hangouts, productivity)
● Recorded Future (natural language processing startup)
● Cinnober Financial Tech. (trading systems)
● Spotify (data processing & modelling)
● Schibsted Media Group (data processing & modelling)
● Mapflat (independent data engineering consultant)

○ ~15 clients: Spotify, 3 banks, 3 conglomerates, 4 startups, 5 *tech, misc

2

Privacy protection resources

3

All of this might go
wrong. Large fine.

Pour your data into
our product.

404

Privacy by design
● Required by GDPR
● Technical scope

○ Engineering toolbox
○ Puzzle pieces - not complete solutions

● Assuming that you solve:
○ Legal requirements
○ Security primitives
○ ...

● Disclaimers:
○ This is not a description of company X
○ This is not legal / compliance advice

4

Archi-
tecture

Statis-
tics

Legal

Organi-
sation

Security

Process Privacy UX

Culture

Requirements, engineer’s perspective
● Right to be forgotten
● Limited collection
● Limited retention
● Limited access

○ From employees
○ In case of security breach

● Consent for processing
● Right for explanations
● Right to correct data
● User data enumeration
● User data export

5

Ancient data-centric systems
● The monolith
● All data in one place
● Analytics + online serving from

single database
● Current state, mutable

- Please delete me?
- What data have you got on me?
- Please correct this data

- Sure, no problem!

6

DB

Presentation

Logic

Storage

Event-oriented / big data systems

7

Every event All events, ever,
raw, unprocessed

Refinement
pipeline

Artifact of
value

Event-oriented / big data systems

8

Every event All events, ever,
raw, unprocessed

Refinement
pipeline

Artifact of
value

● Motivated by
○ New types of data-driven (AI) features
○ Quicker product iterations

■ Data-driven product feedback (A/B tests)
■ Democratised data - fewer teams involved in changes

○ Robustness - scales to more complex business logic

Enable disruption

Data
lake

Data processing at scale

9

Cluster storage

Batch processing

AI feature

DatasetJob
Pipeline

Data-driven product
development

AnalyticsCold
store

Ingress Egress

www.mapflat.com

Workflow orchestrator
● Dataset “build tool”
● Run job instance when

○ input is available
○ output missing
○ resources are available

● Backfill for previous failures
○ Robust system from fragile components

● DSL describes DAG
○ Includes ingress & egress

The most important big data component - it
keeps you sane

Recommended: Luigi / Airflow

10

DB

Orchestrator

Factors of success

11

Functional architecture:
● Event-oriented - append only
● Immutability
● At-least-once semantics
● Reproducibility

○ Through 1000s of copies
● Redundancy

- Please delete me?
- What data have you got on me?
- Please correct this data

- Hold on a second...

Solution space

12

Technical
feasibility

Easy to do
the right thing

Awareness
culture

Personal information (PII) classification
You need to establish a field/dataset
classification. Example:

Is application content sensitive? Depends.

● Music, video playlists - perhaps not
● Running tracks, taxi rides - apparently
● In-application messages - probably

13

● Red - sensitive data
○ Messages
○ GPS location
○ Views, preferences

● Yellow - personal data
○ IDs (user, device)
○ Name, email, address
○ IP address

● Green - insensitive data
○ Not related to persons
○ Aggregated numbers

● Grey zone
○ Birth date, zip code
○ Recommendation / ads models?

PII arithmetics
● Most sensitive data wins

○ red + green = red
○ red + yellow = red
○ yellow + green = yellow

● Aggregation decreases sensitivity
○ sum(red/yellow) = green ?

● Combinations may increase sensitivity
○ green + green + green = yellow ?
○ yellow + yellow + yellow = red ?

● Machine learning models store hidden information
○ model(yellow) = yellow or green ?
○ Overfitting => persons could be identified

14

Make privacy visible at ground level

Suggestions:
● In dataset names

○ hdfs://red/crm/received_messages/year=2017/month=6/day=13
○ s3://yellow/webshop/pageviews/year=2017/month=6/day=13

● In field names
○ response.y_text = “Dear ” + user.y_name + “, thanks for contacting us …”

● In credential / service / table / ... names
● In metadata

● Spreads awareness
● Catch mistakes in code review
● Enables custom tooling for violation warnings
- Difficult to change privacy level

15

Eye of the needle tool
● Provide data access through gateway tool

○ Thin wrapper around Spark/Hadoop/S3/...
○ Hard-wired configuration

● Governance
○ Access audit, verification
○ Policing/retention for experiment data

16

Eye of the needle tool
● Easy to do the right thing

○ Right resource choice, e.g. “allocate temporary
cluster/storage”

○ Enforce practices, e.g. run jobs from central repository code
○ No command for data download

● Enabling for data scientists
○ Empowered without operations
○ Directory of resources

17

Possible strategy: Privacy protection at ingress
Scramble on arrival

+ Simple to implement
- Limits value extraction
- Deanonymisation possible

IMHO not a feasible strategy

18

Privacy protection at egress
Processing in opaque box

+ Enabling
+ Simpler to reason about
- Strict operations required
- Exploratory analytics need explicit egress /

classification

19

Machines are
allowed to see
intermediate data

Humans &
services interact
with exported
data

Permission to process
● Processing personal data requires a sanction

○ Business motive is not sufficient
● Explicit sanction

○ Consent from user
○ Necessary to perform core service

● Implicit sanction
○ Required by regulations

■ Detect money laundry, fraud, abuse
■ Bookkeeping

● Not exempt user
○ Not underage
○ Not politically exposed person
○ No hidden identity

20

● Consent applies at processing date, not collection date

class BiPageView(Task):
 date = DateParameter()

 def requires(self):
 return [PageView(self.date),
 User(self.date),
 BIConsent.latest()]

Consent workflow

21

User BIConsent

BIOkUser

PageView User

BIPage
View

Normal decoration join - same date

User

BIOkUser

User BIConsent

BIPage
View

Consent join - always latest

UserPageView

Towards oblivion
● Left to its own devices,

personal (PII) data spreads
like weed

● PII data needs to be
governed, collared, or
discarded

○ Discard what you can

22

● Discard all PII
○ User id in example

● No link between records or datasets

● Replace with non-PII
○ E.g. age, gender, country

● Still no link
○ Beware: rare combination => not anonymised

Drop user id

Discard: Anonymisation

23

Replace user id with
demographics

Useful for
business
insights

Useful for
metrics

Partial discard: Pseudonymisation
● Hash PII
● Records are linked

○ Across datasets
○ Still PII, GDPR applies
○ Persons can be identified (with additional data)
○ Hash recoverable from PII

● Hash PII + salt
○ Hash not recoverable

● Records are still linked
○ Across datasets if salt is constant

24

Hash user id Useful for
recommendations

Hash user id
+ salt

Useful for product
insights

● Push reruns with
workflow orchestrator

- No versioning support in tools
- Computationally expensive
- Easy to miss datasets
- PII in cleartext everywhere
+ No data model changes required
+ Usually necessary for egress storage

Governance: Recomputation

25

● Fields reference PII table
● Clear single record => oblivion

- PII table injection needed
- Key with UUID or hash

- Extra join
- Multiple or wide PII tables
+ PII table can be well protected

Ejected record pattern

26

● Datasets are immutable - must not remove records
● Version n+1 of raw dataset lacks record
● Short retention of old versions
● Always depend on latest version

○ What about changing PII, e.g. address?
Need versioning in data model?

Record removal in pipelines

27

User PII
2017-06-12

User PII
2017-06-13

class Purchases(Task):
 date = DateParameter()

 def requires(self):
 return [Users(self.date),
 Orders(self.date),
 UserPII.latest()]

● PII fields encrypted
● Per-user decryption key table
● Clear single user key => oblivion

- Extra join + decrypt
- Requires user-defined function in SQL?

- Decryption (user) id needed
+ Multi-field oblivion
+ Single dataset leak → no PII leak
+ Handles changing PII fields

Lost key pattern

28

● Different fields encrypted
with different keys

● Partial user oblivion
○ E.g. forget my GPS coordinates

Lost key partial oblivion

29

● Encrypt key fields that link datasets
● Ability to join is lost
● No data loss

○ Salt => anonymous data
○ No salt => pseudonymous data

Lost link key

30

Reversible oblivion
● Lost key pattern
● Give ejected record key to third party

○ User
○ Trusted organisation

● Destroy company copies

31

● Input:
○ Page view events
○ User account creations
○ User deletion requests

● Business job outputs:
○ Web daily active user count, per country
○ Duplicate display name detection → email

Example: Lost key pattern

32

Raw
NewUser

Raw
Forgotten

User

WebDau

UserName
Duplicate

User
service

DB

Raw
PageViewWeb app

● Split RawNewUser
○ Encryption key
○ Non-PII + encrypted PII

Example: Lost key pattern

33

NewUser

NewUser
Key

Raw
NewUser

Raw
Forgotten

User

WebDau

UserName
Duplicate

User
service

DB

Raw
PageViewWeb app

Joinable

● UserKey = latest user encryption keys
○ Recursive - depends on yesterday
○ Yesterday's + new - forgotten

● User = all users ever seen
○ Recursive
○ Yesterday's + new

■ grows forever
○ Encrypted PII

Example: Lost key pattern

34

NewUser

NewUser
Key

Raw
NewUser

User

Raw
Forgotten

User

WebDau

UserName
Duplicate

UserKey

User
service

DB

Raw
PageViewWeb app

Joinable

● Encrypt page view PII
○ Pseudonymised

● WebDau aggregation requires no PII
● UserNameDuplicate requires email for push

○ Depend on UserKey.latest for decrypting email in User
○ Egress DB should have limited retention

Example: Lost key pattern

35

NewUser

NewUser
Key

Raw
NewUser

User

Raw
Forgotten

User

WebDau

UserName
Duplicate

UserKey

User
service

Latest day
dependency

DB

Raw
PageViewWeb app PageView

Joinable

Must have
retention

Tombstone line
● Produce dataset/stream of forgotten users
● Egress components, e.g. online service

databases, may need push for removal.
○ Higher PII leak risk

36

DB Service

The art of deletion
● Example: Cassandra
● Deletions == tombstones
● Data remains

○ Until compaction
○ In disconnected nodes
○ ...

Component-specific expertise necessary

37

Deletion layers
● Every component adds deletion burden

○ Minimise number of components
○ Ephemeral >> dedicated. Recycle machines.

● Every storage layer adds deletion burden
○ Minimise number of storage layers
○ Cloud storage requires documented erasure semantics + agreements.

● Invent simple strategies
○ Example: Cycle Cassandra machines regularly, erase block devices.

Increasing cost of heterogeneity & on premise storage.

38

Data model deadly sins
● Using PII data as key

○ Username, email

● Publishing entity ids containing PII data
○ E.g. user shared resources (favourites, compilations) including username

● Publishing pseudonymised datasets
○ They can be de-pseudonymised with external data
○ E.g. AOL, Netflix, ...

39

Retention limitation
● Best solved in workflow orchestration

○ Creation and destruction live together
● Short default retention

○ Whitelist exceptions with long retention
● In conflict with technical ideal of immutable raw data

40

Cluster storage Cluster storage

Lake freeze
● Remove expire raw dataset, freeze derived datasets
● Workflow DAG still works

41

Cold store Derived Cold store Derived

www.mapflat.com

What about streaming?

42

Job

Ads Search Feed

App App App

StreamStream Stream

Stream Stream Stream

Job

Job

Stream Stream Stream

Job

Job

Data lake

Business
intelligence

Job

● Unified log - bus of all business events
○ Streams = infinite datasets

● Pipelines with stream processing jobs
○ Governance & reprocessing difficult

● Ejected record & lost key patterns work
○ PII or encryption key in database table

● Retention is naturally limited

www.mapflat.com

Correcting invalid data = human in the loop
● Humans are lousy data processors

○ Expensive to execute
○ Not completely deterministic
○ Not ready to kick off at 2 am
○ Don't read Avro very well
○ Not compatible with CI/CD

43

● Add human curation to cold store
○ Pipeline job merges human curation input
○ Overrides data from other sources

Curation
service

Human
overrides

https://www.flickr.com/photos/jetheriot/7940994640
http://www.publicdomainpictures.net/view-image.php?image=191770&picture=woman-typing-office-computer

Lineage
● Tooling for tracking data flow
● Dataset granularity

○ Workflow manager?
● Field granularity

○ Framework instrumentation?
● Multiple use cases

○ (Discovering data)
○ (Pipeline change management)
○ Detecting dead end data flows
○ Right to export data
○ Explanation of model decisions

44

Resources Credits
● https://www.slideshare.net/lallea/protecting

-privacy-in-practice
● http://www.slideshare.net/lallea/data-pipeli

nes-from-zero-to-solid
● http://www.mapflat.com/lands/resources/re

ading-list
● https://ico.org.uk/
● EU Article 29 Working Party
● ENISA: "Privacy by design in big data"
● GDPR-podden

45

● Alexander Kjeldaas, independent
● Lena Sundin, independent
● Oscar Söderlund, Spotify
● Oskar Löthberg, Spotify
● Sofia Edvardsen,

Sharp Cookie Advisors
● Øyvind Løkling,

Schibsted Media Group
● Enno Runne, Baymarkets

