
Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 1

Loom:
Continuations &

Fibers
January 2018
Ron Pressler

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 2

The following is intended to outline our general product
direction. It is intended for information purposes only, and
may not be incorporated into any contract. 
It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making
purchasing decisions. The development, release, and
timing of any features or functionality described for
Oracle’s products remains at the sole discretion of
Oracle.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 3

A fiber is a thread scheduled not by the OS but by the
Java runtime/user code, i.e., a user mode thread. A fiber
works like a thread, but you can have millions of them
rather than thousands because of low footprint and
negligible task-switching overhead.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 4

Why Now

Sessions are getting longer
(realtime push etc.) => servers
experience more of them, but
spend most of their time waiting
for IO from DB / other services:
5-30% CPU utilization

Servers are underutilized

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 5

Why Fibers

Today, developers are forced to choose between

App

Connections

simple (blocking / synchronous),
but less scalable code (with threads)

App

Connections

complex, non-legacy-interoperable,
but scalable code (asynchronous)

and

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 6

Why Fibers

With fibers, devs have both: simple, familiar, maintainable,
interoperable code, that is also scalable

App

Connections

Fibers make even existing server applications consume fewer
machines (by increasing utilization), significantly reducing costs

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 7

The main motivation of adding continuations to the JDK is
lightweight concurrency (i.e. to implement fibers):

• Higher throughput/lower cost for ordinary Java code (incl. legacy)
• Devs shouldn’t choose between performance and maintainability
• Enables new, modern programming styles

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 8

Why Fibers

Key idea: A language runtime is better positioned to
manage and schedule application threads than the OS,
esp. if they interleave IO and computation and interact
often — exactly how server threads behave (also, UI
elements)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Why Fibers

A B

write X

read X

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 10

Thread(Runnable, ThreadScheduler)

API: Option I

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 11

ThreadFiber

Strand (abstract thread)

API: Option II

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 12

Fiber-based IO (just like regular blocking IO, only scalable)

ServerSocketChannel s = ServerSocketChannel.open().bind(new InetSocketAddress(8080));

new Fiber(() -> {

 try {

 while (true) {

 final SocketChannel ch = s.accept();

 new Fiber(() -> {

 try {

 var buf = ByteBuffer.allocateDirect(1024);

 var n = ch.read(buf);

 String response = "HTTP/1.0 200 OK\r\n…";

 n = ch.write(encoder.encode(CharBuffer.wrap(response)));

 ch.close();

 } catch (IOException e) { … }

 }).start();

 }

 } catch (IOException e) { … }

}).start();

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 13

Fiber-based IO

• Servlet
• JAX-RS

UNCHANGED!*
(* virtually)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 14

IO: Async → Fiber-Blocking

class AsyncFoo {

 public void asyncFoo(FooCompletion callback);

}

interface FooCompletion {

 void success(String result);

 void failure(FooException exception);

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 15

IO: Async → Fiber-Blocking

abstract class AsyncFooToBlocking extends _AsyncToBlocking<String, FooException>

 implements FooCompletion {

 @Override

 public void success(String result) { _complete(result); }

 @Override

 public void failure(FooException exception) { _fail(exception); }

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 16

IO: Async → Fiber-Blocking

class SyncFoo {

 AsyncFoo foo = get instance;

 String syncFoo() throws FooException {

 new AsyncFooToBlocking() {

 @Override protected void register() { foo.asyncFoo(this); }

 }.run();

 }

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 17

Fibers open the door to a wealth of interesting new programming
techniques that could be implemented in libraries (with no explicit
support in the platform). Examples include:

• Channels
• Dataflow
• Actors
• Synchronous programming

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 18

Channels
(a-la Go, Clojure’s core.async)

Channel<String> ch = Channels.newChannel(0);

new Fiber(() -> {

 String m = ch.receive();

 System.out.println("Received: " + m);

}).start();

new Fiber(() -> {

 ch.send("a message");

}).start();

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 19

Dataflow/Reactive

Val<Integer> a = new Val<>();

Var<Integer> x = new Var<>();

Var<Integer> y = new Var<>(() -> a.get() * x.get());

Var<Integer> z = new Var<>(() -> a.get() + x.get());

Var<Integer> r = new Var<>(() -> {

 int res = y.get() + z.get();

 System.out.println("res: " + res);

 return res;

});

Strand.sleep(2000);

a.set(3);

new Fiber<Void>(() -> {

 for (int i=0; i<200; i++) {

 x.set(i);

 Strand.sleep(100);

 }

}).start();

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 20

Functional Reactive

ReceivePort<Integer> cout = Channels.transform(cin)

 .filter(x -> x % 2 != 0)

 .flatmap(x -> Channels.toReceivePort(Arrays.asList(x, x * 10, x*100)));

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 21

Fiber Serialization

Serialization of fibers opens a world of further possibilities:

• Tear down VMs while waiting for an event
• Code/data colocation for big data / novel databases
• Long-running (weeks, months) financial transactions

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 22

Part II
Continuations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 23

What

A continuation (precisely: delimited continuation) is a
program object representing a computation that may be
suspended and resumed (also, possibly, cloned or even
serialized).

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 24

class Foo implements Runnable {

 public void run() {

 … a(); …

 }

 void a() {

 System.out.println(“111”);

 b();

 System.out.println(“222”);

 }

 void b() {

 … Continuation.yield(_A); …

 }

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 25

class Bar {

void f() {

 Continuation c = new Continuation(_A, new Foo());

 c.run();

 c.run();

}

}

111

222

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 26

Cool Stuff You Can Do With Continuations: Generators

for (String x : new Generator(() -> {

 produce(“a”);

 Thread.sleep(100);

 produce(“b”);

 String c = Console.readline();

 produce(c);

 })) {

 System.out.println(x);

 }

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 27

Cool Stuff You Can Do With Continuations: Retry-able Exceptions

new Retry(() -> {

 findFile();

 writeToFile(); }) {

 @Override protected void handle(Exception e) throws Exception {

 if (e instanceof FileNotFoundException) {

 createFile();

 retry();

 } else throw e;

 }}).run();

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 28

Cool Stuff You Can Do With Continuations: Ambiguity

Ambiguity<Integer> amb = solve(() -> {

 int a = amb(1, 2, 3); // a is either 1, 2, or 3

 int b = amb(2, 3, 4); // b is either 2, 3, or 4

 assertThat(b < a); // ... but we know that b < a

 return b;

 });

amb.run(); // returns 2

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 29

Cool Stuff You Can Do With Continuations: Ambiguity

Ambiguity<Integer> amb = solve(() -> {

 Iterable<Integer> a = new Generator<>(() -> {

 produce(amb(2, 1));

 produce(amb(3, 10)); });

 int sum = 0;

 for (int x : a) { sum += x;

 assertThat(x % 2 == 0); }

 return sum;

 });

amb.run(); // => 12

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 30

Thread

Continuation + Scheduler

(we already have a great scheduler: ForkJoinPool)

=

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 31

class Fiber {

 private final Continuation c;

 private final Executor scheduler;

 public Fiber(Executor scheduler, Runnable target) {

 this.c = new Continuation(_FiberScope, target);

 this.scheduler = scheduler;

 }

 public static void park() ≅ { Continuation.yield(_FiberScope); }

 public void unpark() ≅ { scheduler.execute(c); }
}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 32

Forced (time-slice) Preemption

• May be unnecessary
• If we add it — use safepoints

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 33

Implications

The following components would need to be continuation/fiber aware:
• Debuggers and profilers (JFR, JVMTI)
• JDK constructs

– synchronized, Object.wait()
– IO (NIO, old-IO?)
– java.util.concurrent

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 34

Part III
Hotspot Implementation

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 35

We need:

• Millions of continuations (=> low RAM overhead)
• Fast task-switching (=> no stack copying)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 36

Stacks
1. Contiguous virtual memory

• Pros: Native methods (non-goal), smallest change
• Cons: RAM overhead, address-space overhead (32 bit)

2. Stacklets (constant-size, linked, C heap)
• Pros: Native methods (non-goal), non-relocating & treated as ordinary stacks by GC
• Cons: Management, RAM overhead 

3. Horizontal stacks (contiguous, Java heap)
• Pros: least RAM, rely on GC for management
• Cons: More VM (interpreter, compiler) tricks (stacks relocate), new oopMaps

4. Native Horizontal stacks (contiguous, C-heap)
• Pros: least RAM, less GC pressure
• Cons: Management

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 37

Horizontal Stacks

int[] Object[]

Split Simple
int[]

oopMap

int[]

• Pros: GC just works
• Cons: More specialized/less

efficient code, more waste

stack stack

• Pros: More efficient/less
specialized code, less waste

• Cons: How to do GC?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 38

Native Call

v-stack

Continuation

Native frame

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 39

GC

Invariant: continuation stacks mutate only when mounted

