
Streaming Data - Deep Dive
Galder Zamarreño, Clement Escoffier, Katia Aresti,
Thomas Segismont

Introduction
Data Streaming, Microservice, Reactive, and
Containers...

Streaming Data - Architecture Blueprint

#jfokus #data #streaming #architecture @galderz @clementplop4

Browser,
Device,
Sensor

Collection
Tier

Transport
Tier

Analysis
Tier

In-Memory
Data Store

Data
Access Tier

Long-Term Storage

Browser,
Device

#jfokus #data #streaming #architecture @galderz @clementplop5

Streaming Data - Books

#jfokus #data #streaming #architecture @galderz @clementplop6

Browser,
Device,
Sensor

Collection
Tier

Transport
Tier

Analysis
Tier

In-Memory
Data Store

Data
Access Tier

Long-Term Storage

Browser,
Device

#jfokus #data #streaming #architecture @galderz @clementplop7

Browser,
Device,
Sensor

Collection
Tier

Transport
Tier

In-Memory
Data Store

Data
Access Tier

Browser,
Device

Streaming Data - Deep Dive

Microservices - Welcome to a
not so micro-world

#jfokus #data #streaming #architecture @galderz @clementplop

Microservice
The microservice architectural style is an approach to developing a
single application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around business
capabilities and independently deployable by fully automated
deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different
programming languages and use different data storage technologies.
(Martin Fowler)

9

#jfokus #data #streaming #architecture @galderz @clementplop

Each service runs in its own process

So they are distributed applications

● Lightweight interactions
● Loose-coupling

Not only HTTP

● Messaging
● Streams
● (async) RPC

10

#jfokus #data #streaming #architecture @galderz @clementplop

A suite of independent services

Independently developed, tested and deployed

● Automated process
● (Liskov) substitutability

It's all about agility

● Agility of the composition
● You can replace any microservice
● You can decide who uses who

11

#jfokus #data #streaming #architecture @galderz @clementplop12

My
microservice

Some
Software
& Data

How to stay responsive in face of failures,
under varying workload

Distributed systems fail

#jfokus #data #streaming #architecture @galderz @clementplop13

Containers

#jfokus #data #streaming #architecture @galderz @clementplop15

Containers are NOT light VMs

#jfokus #data #streaming #architecture @galderz @clementplop

Container image: the new deployment unit

FROM java:8
COPY . /app
WORKDIR /app
CMD ["java",
 "Main"]

docker build .
-t foo

Container image
(layers)

docker run foo

docker push foo

docker pull foo
docker run foo

Container

16

#jfokus #data #streaming #architecture @galderz @clementplop17

Containers are about
sharing….

My
AppSome

Software
& Data

Container

The hidden truth behind containers

#jfokus #data #streaming #architecture @galderz @clementplop18

Thread-based execution model are not efficient
in containers:
● Too much memory (threads are expensive)
● CPU quotas used to manage thread switch
● Tuning thread pool is hard

Containers are about sharing

The hidden truth being containers

Reactive all the things...

#jfokus #data #streaming #architecture @galderz @clementplop20

Reactive all the things ???

System

eXtensions
Programming

Manifesto

Spring

Streams

Asynchrony

Asynchronous

Scalability

ResilienceElasticity
Back-Pressure

Spreadsheets

Actor
Data Flows

Observable
Events

Message

Reactor
RX Java

#jfokus #data #streaming #architecture @galderz @clementplop21

Reactive
A software showing
responses to stimuli

Reactive
Systems

Reactive
Streams

Akka, Vert.x Reactor, Reactive Spring,
Reactive eXtension, Vert.x

Reactive
Programming

Akka Streams, RX
v2, Reactor, Vert.x

Data Flow
Back-Pressure
Non-Blocking,
Asynchronous

Manifesto, Actor
Messages, Resilience
Elasticity, Scalability,

Asynchronous

Streams, Flows,
Events,

Spreadsheets
Asynchronous

The reactive spectrum

#jfokus #data #streaming #architecture @galderz @clementplop22

http://www.reactivemanifesto.org/

Reactive Manifesto

http://www.reactivemanifesto.org/

#jfokus #data #streaming #architecture @galderz @clementplop23

Sends to an
address

Subscribes to
the address

Message
backbone

Asynchronous message passing

#jfokus #data #streaming #architecture @galderz @clementplop24

Not blocked while
waiting

for a reply

Message
backbone

Elasticity

Resilience

Asynchronous message passing

#jfokus #data #streaming #architecture @galderz @clementplop25

My
Application

Some
Software
& Data

Reactive Systems from the trenches

#jfokus #data #streaming #architecture @galderz @clementplop26

Ideal
world

Task A Task B Task C

Real
world

Blocking I/O

Asynchronous
execution

Asynchronous execution

#jfokus #data #streaming #architecture @galderz @clementplop27

Asynchronous
execution

Async programming model
Non-blocking IO

Task-based concurrency

This is what Eclipse Vert.x offers

Asynchronous execution

#jfokus #data #streaming #architecture @galderz @clementplop28

DE ME!

Taming the async beast with
RX Java 2

#jfokus #data #streaming #architecture @galderz @clementplop30

Asynchronous
execution

Async programming model => RX Java 2
Non-blocking IO => Vert.x

Task-based concurrency => Vert.x

Asynchronous execution

#jfokus #data #streaming #architecture @galderz @clementplop31

Combination of the best ideas from the Observer pattern,
the Iterator pattern, and functional programming

Create data streams

Combine
and

transform

Subscribe to observe the data and
perform side-effects

Reactive eXtension - http://reactivex.io

#jfokus #data #streaming #architecture @galderz @clementplop32

stream
 .doOnNext(item -> System.out.println(item))
 .doOnError(err -> err.printStackTrace())
 .doOnComplete(() -> System.out.println("End of

stream"));

3 types of notifications

#jfokus #data #streaming #architecture @galderz @clementplop33

stream
.map(item -> item + 1);

1 2 3

2 3 4

Synchronous computation, extraction….

Transformation: map

#jfokus #data #streaming #architecture @galderz @clementplop34

stream
.flatMap(item -> Observable

.fromArray(item, item));

1 2 3

1 1 2 2 3 3

Async composition

Transformation: flatMap

#jfokus #data #streaming #architecture @galderz @clementplop35

stream
 .subscribe(
 item -> System.out.println(item),
 err -> err.printStackTrace(),
 () -> System.out.println("End of stream")
);

If you don’t subscribe, nothing happen

Subscription

#jfokus #data #streaming #architecture @galderz @clementplop36

Type Type of stream Notifications Use case

Completable Stream without items Error, End of stream Asynchronous action
without a result

Single Stream with 1 item Item, Error, End of stream Asynchronous action

Maybe Stream with 0 or 1 item Item, Error, No Item Asynchronous lookup

Observable Several items Each item, Error, End of
stream

Notification, Stream
without back-pressure

Flowable Several items + Back
pressure

Each item, Error, End of
stream

Flow of data

Reactive Types

#jfokus #data #streaming #architecture @galderz @clementplop37

Calling a service Single<JsonObject> invoke();
Flushing a storage Completable flush();
Query / Lookup Maybe<Person> findByName();
Keystrokes Observable<Integer> keyStrokes();
Read a file Flowable<Buffer> read();

Reactive Types

#jfokus #data #streaming #architecture @galderz @clementplop38

DE ME!

1 container, 2 containers,
3 containers…. BOOM!

#jfokus #data #streaming #architecture @galderz @clementplop

#jfokus #data #streaming #architecture @galderz @clementplop41

OpenShift - A Kubernetes distribution

#jfokus #data #streaming #architecture @galderz @clementplop42

OpenShift - Workflow

#jfokus #data #streaming #architecture @galderz @clementplop43

DE ME!

What about streaming?

#jfokus #data #streaming #architecture @galderz @clementplop45

Data Streaming

#jfokus #data #streaming #architecture @galderz @clementplop46

Browser,
Device,
Sensor

Collection
Tier

Transport
Tier

Analysis
Tier

In-Memory
Data Store

Data
Access Tier

Long-Term Storage

Browser,
Device

#jfokus #data #streaming #architecture @galderz @clementplop47

real-time data streams to build robust,
reactive and scalable applications

Objectives

#jfokus #data #streaming #architecture @galderz @clementplop48

Two data streams, from 2
different providers:
● Swiss transport timetable

data (opendata.ch)
● Positions of trains at a

given time (sbb.ch)

Dashboard with delayed trains

Web application monitoring the
delayed trains position

Use Case: Swiss Trains

#jfokus #data #streaming #architecture @galderz @clementplop

{"stop":{"station":{"id":"8500301","name":"Rheinfelden","score":null,"coordina
te":{"type":"WGS84","x":47.55121,"y":7.792155},"distance":null},"arrival":null
,"arrivalTimestamp":null,"departure":"2016-02-29T17:34:00+0100","departureTime
stamp":1456763640, "delay":3,"platform":"4","prognosis":{"platform":"4","arriva
l":null,"departure":"2016-02-29T17:37:00+0100","capacity1st":1,"capacity2nd":1
},"realtimeAvailability":null,"location":{"id":"8500301","name":"Rheinfelden",
"score":null,"coordinate":{"type":"WGS84","x":47.55121,"y":7.792155},"distance
":null}},"name":"IR 1978" ,"category":"IR","categoryCode":2,"number":"1978",
"operator":"SBB","to":"Basel SBB","capacity1st":null,"capacity2nd":null,
"subcategory":"IR","timeStamp":1456761753983,"nextStation":{"station":{"id":"8
500301","name":"Rheinfelden","score":null,"coordinate":{"type":"WGS84","x":47.
55121,"y":7.792155},"distance":null},"arrival":"2016-02-29T17:34:00+0100","arr
ivalTimestamp":1456763640,"departure":null,"departureTimestamp":null,"delay":n
ull,"platform":"","prognosis":{"platform":null,"arrival":null,"departure":null
,"capacity1st":null,"capacity2nd":null},"realtimeAvailability":null,"location"
:{"id":"8500301","name":"Rheinfelden","score":null,"coordinate":{"type":"WGS84
","x":47.55121,"y":7.792155},"distance":null}},"@version":"1","@timestamp":"20
16-02-29T16:02:34.781Z"}

49

#jfokus #data #streaming #architecture @galderz @clementplop

{"x":"8290840","y":"47483629", "name":"IR 1978",
"trainrefdate":"29.02.16","category":"IR", "trainid":"84/25934/18/24/95","direc
tion":"15","prodclass":"4","delay":"7","passproc":"","lstopname":"Basel
SBB","poly":[{"x":"8290840","y":"47483629","passproc":"",
"msec":"0","direction":"15"},{"x":"8290193","y":"47483647","passproc":"","mse
c":"2000","direction":"15"},{"x":"8289528","y":"47483674","passproc":"","msec
":"4000","direction":"15"},{"x":"8288863","y":"47483701","passproc":"","msec"
:"6000","direction":"15"},{"x":"8288198","y":"47483728","passproc":"","msec":
"8000","direction":"15"},{"x":"8287532","y":"47483755","passproc":"","msec":"
10000","direction":"15"},{"x":"8286885","y":"47483773","passproc":"",...],"ti
meStamp":1456761728202,"@version":"1","@timestamp":"2016-02-29T16:02:11.321Z"
}

50

Jump on the train!

