
by Bert Ertman

Those who stand for nothing,
fall for anything - Alexander
Hamilton

Serverless  
The Future of the Cloud?!

@BertErtman

DEEP DIVE

• Fellow, Director of Technology
Outreach at Luminis

• Background in all things Java
since 1995

• Java Champion, JavaOne
Rockstar Speaker, and a Duke’s
Choice Award Winner

• Involved in architecting and
implementing dozens of large
scale systems over the past 20
years or so

• Book author for O’Reilly, speaker
at many conferences

The Evolution of Compute

Physical

Virtualization

Cloud Compute
Containers Serverless

Why?!

The case for Serverless

• So far, the cloud is just someone else’s computer

• Servers should be treated as cattle, not pets

• PAYGO? or PAYGO&aAYDG?

“No server is easier to manage
than no server”

- Werner Vogels 
CTO, Amazon

Serverless - what’s in a name?

• Mostly describes what its not…

• Also known as Functions as a Service (FaaS)

• or Function PaaS (fPaaS) as defined by Gartner

• Some people refer to it as Back-end as a Service (BaaS)

Wait! Did someone just say
“Back-end as a Service”?

Back-end as a Service??

Se
rv

er
le

ss

M
an

ife
st

o

• Functions are the unit of deployment and scaling

• No Machines, VMs, or Containers are visible in the programming
model

• Permanent storage lives elsewhere

• Scales per request. Users cannot over- or under-provision capacity

• Never pay for idle (no cold servers/containers or their costs)

• Implicitly fault-tolerant because functions can run anywhere

• BYOC - Bring Your Own Code

• Metrics and Logging are a universal right

Main Benefits

• No servers to administer

• Pay for code execution only

• Automatic Scaling

In Other Words…

• We don’t (have to) care about Application Servers

• We don’t (have to) care about Docker

And Best of All

• Very short Time-to-Market

• From development to production in matter of seconds

• Very affordable (PAYG only, no up-front costs)

So far so good,
right?

FaaS - Another Look

• Functions as first class citizens

• Run your code (function) in an external,
sandboxed, stateless, transient compute
container (in the cloud)

But…isn’t that PaaS?!

PaaS vs FaaS
• With PaaS, you still manage “applications”

• With PaaS, you take care of scaling

• With PaaS, you manage runtime environment configuration

• With PaaS, you’ll pay for all of the above too

• With FaaS, you have neither

Functions

Applications

Runtime

Containers

Operating
System

Virtualization

Hardware

IaaS

Functions

Applications

Runtime

Containers

Operating
System

Virtualization

Hardware

CaaS

Functions

Applications

Runtime

Containers

Operating
System

Virtualization

Hardware

PaaS

Functions

Applications

Runtime

Containers

Operating
System

Virtualization

Hardware

FaaS

Customer
Managed

Customer
Managed Unit of

Scale

Vendor Managed

Slide borrowed, with permission, from Arun Gupta @arungupta

Serverless implementations
• Several Cloud vendors have implementations:

• AWS Lambda

• Google CloudFunctions

• Azure Functions

• IBM BlueMix OpenWhisk

2015 2016 2017

Serverless implementations

https://github.com/fnproject/fn

AWS Lambda

• Event-driven, serverless computing platform provided by Amazon

• Runs code in response to events and automatically manages the
compute resources required by that code

• First introduced in Nov 2014

• Part of the Amazon Web Services offerings

Comparing AWS Compute Types

• EC2 (IaaS)

• EC2 Container Service (CaaS)

• Elastic Beanstalk (PaaS)

• Lambda (FaaS)

Runtime Support

• Python 2.7

• NodeJS 4.3

• Java 8

• C#

• Go

How it works

Upload Trigger Run Pay

lambda

Erhm..

Getting Started
• Signup for a free AWS account

• Install Amazon AWS plugin for Eclipse

• comes with Amazon Java SDK for AWS

• Install AWS CLI (optional)

• Edit code offline and upload artefact to
AWS Lambda

demo

Lambdas are
event-driven

Many Event Sources
API Gateway 

Amazon S3

Amazon DynamoDB

Amazon Aurora  

Amazon Simple Notification Service

Amazon Simple Email Service

Amazon Cognito  

Amazon CloudWatch

Amazon Kinesis Streams 

AWS CodeCommit

AWS CloudFormation 

AWS Config 

Amazon Lex 

Many Event Sources
API Gateway 

Amazon S3

Amazon DynamoDB

Amazon Aurora  

Amazon Simple Notification Service

Amazon Simple Email Service

Amazon Cognito  

Amazon CloudWatch

Amazon Kinesis Streams 

AWS CodeCommit

AWS CloudFormation 

AWS Config 

Amazon Lex 

HTTP(s) requests

CRUD events on
data sources

messaging
events

log/stream
processing

commit hooks /
AWS services

setup

configuration mgmt

voice & text

Rethinking Traditional
Architectural Concepts

Rethinking Traditional Architectural Concepts

Client
 (browser)

Web Application
(server-side) Database

Client
 (browser) API Gateway

Purchase
Database

Authentication
Service

Product
Catalog

(Database)

Search
 function

Purchase
function

CDN

1
2

3 6

74 5

Rethinking Traditional Architectural Concepts

Just because you can might not
always be the right reason

Serverless > FaaS

Example: Event-based processing

• Respond to incoming data, such as an S3 Bucket insert

• Useful for data/stream processing, MapReduce, or batch
processing

Typical Scenario

Application S3 Bucket S3 BucketLambda function

AWS S3

• Amazon Simple Storage Service (S3) is object based storage
designed for extreme scalability

• Primary storage type for cloud-native applications

demo

Dude, this is just database
triggers all over again!

Better Example: BaaS

• Backend-as-a-Service for a (mobile/web) app

• Responds to incoming HTTP GET/POST requests

• Stateless

Typical Scenario

Mobile App

Web application

API Gateway Lambda function DynamoDB

AWS API Gateway

• Managed service to create/publish/maintain secure APIs at scale

• Define REST APIs for Lambdas

• Documentation support for APIs (Swagger)

demo

Typical Scenario

Mobile App

Web application

API Gateway Lambda function DynamoDB

 Microservice?

Are Lambda functions Microservices?
• Similarities:

• Do one thing, and one thing well

• Event-based interaction == choreography model

• Differences:

• One Lambda is equal to one action == NanoService

• Microservice == bounded context of actions with autonomous
storage

Typical Scenario

Mobile App

Web application

API Gateway

CRUD
Lambda
functions

DynamoDB

 Microservice

Developing ZeroOps
Serverless Microservices

running in the Cloud
using

AI & Machine Learning

Service Composition
• Most scenarios require other services, such

as storage, messaging, mail, compute, and
analysis, etc

• Amazon recently launched SAM

- Semi-standard DSL for Serverless
computing (yaml/json)

- Extension for AWS CloudFormation

SAM
Serverless Application Model

AWS CloudFormation

• Managed service to create/manage/provision collections of AWS
resources

- create/manage stacks from templates

- figures out deployment order automagically

demo

Other Use-Cases

• Implement custom CI/CD pipeline on AWS

• Bots

• Voice Control :)

Amazon Echo Alexa Skill Lambda function

Typical Scenario

demo

Lambdas can be
monetized as well…

Going beyond hello world

What Expedia is doing with Lambda

source: AWS re:invent 2016: Serverless Computing Patterns at Expedia (SVR306)

beyond

Hello World

example

Some pointers beyond hello world…
• Logging

• Testing

• Advanced configuration

• CI/CD - how to integrate?

• Upload size

• Dealing with lock-in

• Performance

Logging

• Simple print to console statements will end up in the application log

- which will be picked up by CloudWatch

• Context API offers a Logger

• Allows for log4J configuration

What about Testing?

• Functions are easy to unit test

- stateless

- sometimes just a few dependencies (that can be mocked)

What about Integration Testing?

Integration Testing

• Requires you to have (or simulate) the environment and
infrastructure underneath your lambda function

• You can’t run a local AWS cloud* on your laptop or build server

• API Gateway supports staging

• Max. 1000 parallel running Lambdas in production (default)

*) Some AWS services can be mocked locally

Advanced Configuration
• Externalize configuration using Environment Variables

• AWS Resource and Role permissions and configuration thereof can
be a real pain in the butt sometimes

• AWS API Gateway is cumbersome to configure as well

• SAM offers some relieve

• AWS online documentation mostly sucks :(

Deployment

• AWS Lambda Eclipse IDE plugin

• AWS Web Console

• AWS CLI

CI/CD

• Jenkins (can be setup and run from EC2 instance)

• AWS Lambda plugin

• Trigger from version control (GitHub or CodeCommit) or S3 bucket
upload

Upload Size

• AWS Java SDK plus third party libs: ~63MB

- Eclipse AWS plugin adds it in by default

- Solution: manually add only minimum required separate libs in
pom

🔐 Lock-in
• You tie into AWS specific solutions easily:

- documentation, metrics, and monitoring (CloudWatch)

- minimize risk by separating implementation code from the
function handler

- but you probably tie into more AWS specific solutions beyond
lambdas like: API Gateway, S3, SNS, SQS, SES, etc.

Performance
• JavaScript and PHP are interpreted on the go and hardly incur a

start-up time performance penalty

• Java does have a performance penalty in firing up the JVM, but
depending on your usage this doesn’t have to be a problem

• AWS will autoscale your functions when load increases

- up to a max amount of 1000 running lambda functions (default)

Mooaaarrrr abstractions pleaz!

Alternatively

• Give serverless.com a spin

• A framework for creating AWS
Lambda powered functions with
(even) less hassle

• Google, IBM, and Microsoft
offerings also supported

http://serverless.com

And for JavaScript fanboys…

• Try claudiajs.com

• A framework for creating AWS
Lambda powered JavaScript
microservices the easy way

http://claudiajs.com

Yeah, nice and all, but all of this
$**t is running in the cloud…

Funcatron

• Framework that uses the Lambda-paradigm

• Created by David Pollack (Lift)

• Deploy to Mesos, Kubernetes, Docker
Swarm

Apache OpenWhisk

• Runs in IBM’s and Red Hat’s cloud offerings, but can also run on-
premise

• OpenWhisk is Apache licensed and Open Source

• Currently supports: JavaScript, Java, Python, and Swift(!)

• Possible to run functions in provided Docker images

Fn - Why another framework?

• Most serverless FaaS offerings are proprietary, only some are open
source

• Many common concepts, but no standards

• Poor development experience - low fidelity between DEV and PROD

• Poor Java support

Is
 th

is
 s

til
l

Se
rv

er
le

ss
?

• Functions are the unit of deployment and scaling

• No Machines, VMs, or Containers are visible in the programming
model

• Permanent storage lives elsewhere

• Scales per request. Users cannot over- or under-provision capacity

• Never pay for idle (no cold servers/containers or their costs)

• Implicitly fault-tolerant because functions can run anywhere

• BYOC - Bring Your Own Code

• Metrics and Logging are a universal right

Functions

Applications

Runtime

Containers

Operating
System

Virtualization

Hardware

Dev Team

Ops Team

Data Center

Is this still Serverless?

OpenWhisk Fn

AWS Lambda

demo

Now Serverless is cool, but there
are some drawbacks too…

Drawbacks
• Vendor control and lock-in

• Multi-tenancy

• Security concerns (increasing the attack surface)

• Loss of server optimizations

• Execution time is limited

• Start-up latency

• Testing

• Discovery

summary

Serverless
• ..is rapidly being embraced by major cloud players

• ..is promoting functions as first class citizens

• ..is event-based, stateless, and transient

• ..is infinitely scalable (in theory)

• ..is different from traditional deployment models

• ..is giving the cloud a run for its money

• ..is lots of bang for the buck

• ..is still very much proprietary, so lock-in is your choice!

Serverless, the future of
the Cloud!

Thank you!
@BertErtman

