
by Bert Ertman

Those who stand for nothing,
fall for anything - Alexander
Hamilton

Serverless  
The Future of the Cloud?!

@BertErtman

• Fellow, Director of Technology
Outreach at Luminis

• Background in all things Java
since 1995

• Java Champion, JavaOne
Rockstar Speaker, and a Duke’s
Choice Award Winner

• Involved in architecting and
implementing dozens of large
scale systems over the past 20
years or so

• Book author for O’Reilly, speaker
at many conferences

The Evolution of Compute

Physical

Virtualization

Cloud Compute
Containers Serverless

The case for Serverless

• So far, the cloud is just someone else’s computer

• Servers should be treated as cattle, not pets

• PAYGO? or PAYGO&aAYDG?

“No server is easier to manage
than no server”

- Werner Vogels 
CTO, Amazon

Serverless - what’s in a name?

• Mostly describes what its not…

• Also known as Functions as a Service (FaaS)

• or Function PaaS (fPaaS) as defined by Gartner

• Some people refer to it as Back-end as a Service (BaaS)

Wait! Did someone just say
“Back-end as a Service”?

Back-end as a Service??

Se
rv

er
le

ss

M
an

ife
st

o

• Functions are the unit of deployment and scaling

• No Machines, VMs, or Containers are visible in the programming
model

• Permanent storage lives elsewhere

• Scales per request. Users cannot over- or under-provision capacity

• Never pay for idle (no cold servers/containers or their costs)

• Implicitly fault-tolerant because functions can run anywhere

• BYOC - Bring Your Own Code

• Metrics and Logging are a universal right

Main Benefits

• No servers to administer

• Pay for code execution only

• Automatic Scaling

In Other Words…

• We don’t (have to) care about Application Servers

• We don’t (have to) care about Docker

So far so good,
right?

Serverless implementations
• Several Cloud vendors have implementations:

• AWS Lambda

• Google CloudFunctions

• Azure Functions

• IBM BlueMix OpenWhisk

2015 2016 2017

Serverless implementations

https://github.com/fnproject/fn

AWS Lambda

• Event-driven, serverless computing platform provided by Amazon

• Runs code in response to events and automatically manages the
compute resources required by that code

• First introduced in Nov 2014

• Part of the Amazon Web Services offerings

Runtime Support

• Python 2.7

• NodeJS 4.3

• Java 8

• C#

• Go

How it works

Upload Trigger Run Pay

lambda

Erhm..

demo

Lambdas are
event-driven

Many Event Sources
API Gateway 

Amazon S3

Amazon DynamoDB

Amazon Aurora  

Amazon Simple Notification Service

Amazon Simple Email Service

Amazon Cognito  

Amazon CloudWatch

Amazon Kinesis Streams 

AWS CodeCommit

AWS CloudFormation 

AWS Config 

Amazon Lex 

Many Event Sources
API Gateway 

Amazon S3

Amazon DynamoDB

Amazon Aurora  

Amazon Simple Notification Service

Amazon Simple Email Service

Amazon Cognito  

Amazon CloudWatch

Amazon Kinesis Streams 

AWS CodeCommit

AWS CloudFormation 

AWS Config 

Amazon Lex 

HTTP(s) requests

CRUD events on
data sources

messaging
events

log/stream
processing

commit hooks /
AWS services

setup

configuration mgmt

voice & text

Rethinking Traditional
Architectural Concepts

Rethinking Traditional Architectural Concepts

Client
 (browser)

Web Application
(server-side) Database

Client
 (browser) API Gateway

Purchase
Database

Authentication
Service

Product
Catalog

(Database)

Search
 function

Purchase
function

CDN

1
2

3 6

74 5

Rethinking Traditional Architectural Concepts

Just because you can might not
always be the right reason

Example: Event-based processing

• Respond to incoming data, such as an S3 Bucket insert

• Useful for data/stream processing, MapReduce, or batch
processing

Typical Scenario

Application S3 Bucket S3 BucketLambda function

demo

Dude, this is just database
triggers all over again!

Another Example: BaaS

• Backend-as-a-Service for a (mobile/web) app

• Responds to incoming HTTP GET/POST requests

• Stateless

Typical Scenario

Mobile App

Web application

API Gateway Lambda function DynamoDB

demo

Other Use-Cases

• Implement custom CI/CD pipeline on AWS

• Bots

• Voice Control :)

Amazon Echo Alexa Skill Lambda function

Typical Scenario

demo

What Expedia is doing with Lambda

source: AWS re:invent 2016: Serverless Computing Patterns at Expedia (SVR306)

beyond

Hello World

example

Yeah, nice and all, but all of this
$**t is running in the cloud…

Apache OpenWhisk

• Runs in IBM’s and Red Hat’s cloud offerings, but can also run on-
premise

• OpenWhisk is Apache licensed and Open Source

• Currently supports: JavaScript, Java, Python, and Swift(!)

• Possible to run functions in provided Docker images

Is
 th

is
 s

til
l

Se
rv

er
le

ss
?

• Functions are the unit of deployment and scaling

• No Machines, VMs, or Containers are visible in the programming
model

• Permanent storage lives elsewhere

• Scales per request. Users cannot over- or under-provision capacity

• Never pay for idle (no cold servers/containers or their costs)

• Implicitly fault-tolerant because functions can run anywhere

• BYOC - Bring Your Own Code

• Metrics and Logging are a universal right

Functions

Applications

Runtime

Containers

Operating
System

Virtualization

Hardware

Dev Team

Ops Team

Data Center

Is this still Serverless?

OpenWhisk Fn

AWS Lambda

Now Serverless is cool, but there
are some drawbacks too…

Drawbacks
• Vendor control and lock-in

• Multi-tenancy

• Security concerns (increasing the attack surface)

• Loss of server optimizations

• Execution time is limited

• Start-up latency

• Testing

• Discovery

summary

Serverless
• ..is rapidly being embraced by major cloud players

• ..is promoting functions as first class citizens

• ..is event-based, stateless, and transient

• ..is infinitely scalable (in theory)

• ..is different from traditional deployment models

• ..is giving the cloud a run for its money

• ..is lots of bang for the buck

• ..is still very much proprietary, so lock-in is your choice!

Serverless, the future of
the Cloud!

Thank you!
@BertErtman

