Shenandoah GC

...and how it looks like in February 2018

Aleksey Shipilév

shade@redhat.com
@shipilev

Disclaimers First! This talk:

1. ...assumes some knowledge of GC internals: this is
implementors-to-implementors talk, not
implementors-to-users - we are here to troll for ideas

2. ...briefly covers successes, and thoroughly covers
challenges: mind the availability heuristics that can
confuse you into thinking challenges outweigh the
successes

3. ...covers many topics, so if you have blinked and lost the
thread of thought, wait a little up until the next (ahem)
safepoint

Q redhat

Overview

Overview: Landscape

Young GC Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :(Sopy Concurrent Mark I Conc. Sweep Does not solve
e . Init Mark Finish Mark et - fragmentation :(
G1:
Smaller, adjustable, Copy Concurrent Mark Compact Smaller, adjustable,
but still a pause :(., = | L but still a pause :(
Tt i Init Mark Finish Mark e -
Shenandoah:
Conc. Partial Concurrent Mark I Conc. Compact
Init Mark Finish Mark

O redhat

Overview: Key Idea (Java Analogy)

class VersionUpdater<T, V> {
final AtomicReference<T> ref = ...;

void writeValue(V value) {
do {
T 0ldObj = ref.get();
T newObj = copy(oldObj);
new0bj.set (value) ;
+} while (!'ref.compareAndSet(0ld0bj, newObj));

3

Il

3

Everyone wrote this thing about a hundred times...
Qredhat

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

fwdptr is attached to every instance,

all the times @ redrat

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

fwdptr always points to most actual copy,

and gets atomically updated during evacuation & recno

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

Write barriers maintain to-space invariant:

«All writes happen into to-space copy» & redrot

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

Read barriers help to select the actual copy for reading
(Not the invariant: JLS allows reads from old copies) @ e

Overview: Key Idea

Brooks forwarding pointer to help concurrent copying:

This mechanics allows to update

the heap references concurrently @ e
= redna

Overview: Regular GC Cycle

Application active

O redhat

Overview: Regular GC Cycle

1. Snapshot-at-the-beginning concurrent mark

O redhat

Overview: Regular GC Cycle

Concurrent mark I Concurrent evacuation

Application active l Application active
Init Mark Final Mark

Application active

1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation

O redhat

Overview: Regular GC Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active l Application active Application active Application Active
Init Mark Final Mark Init-UR Final-UR

1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation
3. Concurrent update references

O redhat

Overview: Regular GC Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active l Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

1. Snapshot-at-the-beginning concurrent mark
2. Concurrent evacuation
3. Concurrent update references
(optional, can be coalesced with upcoming cycle marking)

O redhat

Basics

Basics: Concurrent GC Works!

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 77260M->77288M(102400M) 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 85928M->85928M(102400M) 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q redhat

Basics: Concurrent GC Works!

LRUFragger, 100 GB heap, ~ 80 GB LDS:

Pause Init Mark 0.437ms

Concurrent marking 76780M->77260M(102400M) 700.185ms

Pause Final Mark 77260M->77288M(102400M) 0.698ms

Concurrent cleanup 77288M->77296M(102400M) 0.176ms

Concurrent evacuation 77296M->85696M(102400M) 405.312ms

Pause Init Update Refs 0.038ms

Concurrent update references 85700M->85928M(102400M) 319.116ms
Pause Final Update Refs 85928M->85928M(102400M) 0.351ms

Concurrent cleanup 85928M->56620M(102400M) 14.316ms
Q redhat

Basics: Concurrent Means Freedom

Concurrent collector runs GC cycles
without blocking application progress

m Slow concurrent phase means higher GC duty cycle
m Steal more cycles from application, not pause it extensively
m Heuristics mistakes are (usually) much less painful
m Control the GC cycle time budget: -XX:ConcGCThreads=. . .

m Testing:
m periodic GCs without significant penalty

m continuous GC (+ «back-to-back») gets the lowest footprint
m aggressive GC (+ «move everything») aids testing a lot

Q redhat

Basics: Concurrent GC Only For Large Heaps?

Latencyge = o * Sizepeqp ¥ MemRef s, x Latencymen

Q redhat

Basics: Concurrent GC Only For Large Heaps?

Latencyce = a % Sizepeqp ¥ MemRe fsg,, * Latencymem

N

Heap size collected End-to-end
per GC cycle, memory latency,
MB ns/access

Memory references
during STW,
accesses/MB

Q redhat

Basics: Concurrent GC Only For Large Heaps?

Latencyge = o * Sizepeqp ¥ MemRef s, x Latencymen
«Large heap»:

B Sizepeqp 80€S UP, MemRefsg,, must go down
m This assumes Latency,en 1S low

Q redhat

Basics: Concurrent GC Only For Large Heaps?

Latencyge = o * Sizepeqp ¥ MemRef s, x Latencymen

«Large heap»:
B Sizepeqp 80€S UP, MemRefsg,, must go down
m This assumes Latency,en 1S low

«Slow hardware»:
m Latencymen 80€S Up, MemRe f sg,, must go down!
m This assumes Sizepeq, is low

Q redhat

Basics: Slow Hardware
Raspberry Pi 3, running springboot-petclinic:

-XX:+UseShenandoahGC

Pause Init Mark 8.991ms

Concurrent marking 409M->411M(512M) 246.580ms
Pause Final Mark 3.063ms

Concurrent cleanup 411M->89M(512M) 1.877ms

-XX:+UseParallelGC
Pause Young (Allocation Failure) 323M->47M(464M) 220.702ms

-XX:+UseG1GC
Pause Young (Gl Evacuation Pause) 410M->38M(512M) 164.573ms

Q redhat

Basics: Releases
Easy to access (development) releases: try it now!

m Development in separate JDK 10 forest, regular backports
to separate JDK 9 and 8u forests

m JDK 8u backports ship in RHEL 7.4+, Fedora 24+
m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q redhat

Basics: Observations K8,

1. Concurrent GC works, and works fine

m Figuring out throughput, latency hiccups, footprint features
m Testing, refactoring, bugfixes are significant part of the story

Q redhat

Basics: Observations K8,

1. Concurrent GC works, and works fine

m Figuring out throughput, latency hiccups, footprint features
m Testing, refactoring, bugfixes are significant part of the story

2. Adoption provides surprises
m Small-to-mid heap sizes (below CompressedOops limit?)
m Care about latencies only so much (<10 ms is okay)
m Care about footprint a lot! (see next section)
m Able to accept 10-20% throughput hit

Q redhat

Basics: Observations K8,

1. Concurrent GC works, and works fine

m Figuring out throughput, latency hiccups, footprint features
m Testing, refactoring, bugfixes are significant part of the story

2. Adoption provides surprises

m Small-to-mid heap sizes (below CompressedOops limit?)
m Care about latencies only so much (<10 ms is okay)

m Care about footprint a lot! (see next section)

m Able to accept 10-20% throughput hit

3. Backports are very important part of the story

m We have no adopters for sh/jdk10!
m Real People (tm) are on sh/jdk8u, or RHEL/Fedora RPMs

Q redhat

Footprint

Footprint: Overheads

Shenandoah requires additional word per object
for forwarding pointer at all times, plus some native structs

m Java heap: 1.5x worst and 1.05-1.10x avg overhead
«—»: the overhead is non-static
«+»: counted in Java heap - no surprise RSS inflation

m Native structures: 2x marking bitmaps, each 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is static: -Xmx100g means 103 GB RSS

Q redhat

Footprint: Overheads

Shenandoah requires additional word per object
for forwarding pointer at all times, plus some native structs

m Java heap: 1.5x worst and 1.05-1.10x avg overhead
«—»: the overhead is non-static
«+»: counted in Java heap - no surprise RSS inflation

m Native structures: 2x marking bitmaps, each 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is static: -Xmx100g means 103 GB RSS

m Surprise: a significant part of footprint story is heap
sizing, not per-object or per-heap overheads
Qredhat

Footprint: Heap Uncommit

RSS, MB

800 r - -
700
600
500 >
400 :
300 :
200 :

100 :

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

Serial .

Parallel -

G1 3
Shenandoah i

. i
—_—-

time, sec

Full GC

O redhat

Footprint: Heap Uncommit

RSS, MB

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

800 ¢+ vy v

700 :

500 :

:]
600 : r"_ru"

Parallel
G

]
Shenandoah

400 :
300 :
200 :

100 :

0
20

0
First uncommit

time, sec

FullGC

O redhat

Footprint: Heap Uncommit

RSS, MB

800
700

600

500 :
400
300 :
200

100 :

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

Parallel
G

]
Shenandoah

time, sec

FullGC

O redhat

Footprint: Heap Uncommit

RSS, MB

800 - - -
700
600 :
500 :
400
300 :
200

100 :

wildfly-swarm-rest-http, wrk http test, JDK 10 x86-64, -Xmx512m

20

40 60

Second uncommit time, sec

Serial :

Parallel :

G1 :
Shenandoah 3
|

FullGC

O redhat

Footprint: Enterprise Hello World

Start with -Xmx100g, allocate a terabyte of garbage,
print «Hello World», wait for first customer to never come:

(} ; After startup
Total: reserved=109842185KB, committed=108152925KB

Heap: reserved=104857600KB, committed=104857600KB
GC: reserved= 4917136KB, committed= 3278736KB

; b minutes later:

Total: reserved=109842307KB, committed= 52439KB
Heap: reserved=104857600KB, committed= 32768KB
GC: reserved= 4917186KB, committed= 3010KB

Q redhat

Easy cloud savings right there

Footprint: Enterprise F (Cloud providers hate this guy!")

Start with -Xmx100g, allocate a terabyte|of garbage,
print «Hello World», wait for first customer to never come:

5‘} ; After startup
(Total: reserved=109842185KB, committed=108152925KB

Heap: reserved=104857600KB, committed=1048p7600KB
GC: reserved= 4917136KB, committed= 32\38736KB

; 5 minutes later:

Total: reserved=109842307KB, committed= 52439KB
Heap: reserved=104857600KB, committed= 32768KB
GC: reserved= 4917186KB, committed= 3010KB

or not: https://jelastic.com/blog/tuning-garbage-collector- java-memory-usage-optimizages %dhat

https://jelastic.com/blog/tuning-garbage-collector-java-memory-usage-optimization/

Footprint: Future Improvements

12aus T W ...
i & Fwdptr at constant offset.
compressed oop Handled by a”ocation path.
32 e RN R R R RN NN N N R R R R R RN AN EEEEEEEEEEEEEEEE

Q redhat

Footprint: Future Improvements

-8 "

0 mnm

12aas

int

int

long

long

K Compressing fwdptr
would not help:

compressed oop

compressed oop

alignment!

O redhat

Footprint: Future Improvements

_8 LER]
Fwd Ptr
Fwd Ptr

0 o —

12aas

Moving into object —
and compressing fong ong
would help!

] Fwd Ptr

oop compressed oop int

compressed oop

Q redhat

: : @
Footprint: Observations oY

1. Footprint story is nuanced
m Blindly counting bytes taken by Java heap and GC does not cut it

Q redhat

Footprint: Observations Q20

1. Footprint story is nuanced
m Blindly counting bytes taken by Java heap and GC does not cut it

2. Fwdptr overhead is substantial and manageable

m Comparing with per-oop-field cost is hard!
m More intrusive fwdptr injection cuts the overhead down

Q redhat

Footprint: Observations Q20

1. Footprint story is nuanced
m Blindly counting bytes taken by Java heap and GC does not cut it

2. Fwdptr overhead is substantial and manageable

m Comparing with per-oop-field cost is hard!
m More intrusive fwdptr injection cuts the overhead down

3. Idle footprint seems to be of most interest

m Few adopters (none?) care about peak footprint, but we still do
m Anecdote: I am running Shenandoah with my IDEA and CLion,
because memory is scarce on my puny ultrabook

Q redhat

Barriers

Barriers: Sadness Distilled

Sad part of barriers story:
Shenandoah needs much more barriers

1. SATB barriers for reference stores

2. Write barriers on all stores, not only reference stores
3. Read barriers on almost all heap reads

4. Other exotic barriers: acmp, CAS, clone, ...

Q redhat

Barriers: SATB Barriers

Read TLS flag and see tf mark ts enabled
cmpb 0x2, 0x3d8(%r15)
jnz OMG-MARKING

...actual ref store follows...

m Incidence: covers all reference stores

m Reason: captures destructive stores that break marking
m Impact: 0. .37 throughput hit

m Optimizeability: medium, requires raw memory slices

Q redhat

Barriers: Read Barriers
Read Barrier: dereference via fwdptr
mov -0x8(%r10),%r10 # obg = *(obj - 8)

...actual read from /ri0 follows. ..

m Incidence: before almost every heap read

m Reason: support concurrent copying

m Impact: 0. .15% throughput hit

m Optimizeability: good, barriers move with heap accesses

Q redhat

Barriers: Write Barriers

Read TLS flag and see <f evac is enabled
cmpb 0x4, 0x3d8(%r15)
jne OMG-EVAC-ENABLED # 0h my. ..

Not enabled: read barrier
mov -0x8(%r10),%r10 # obg = *(obj - 8)

...actual store follows. ..

m Incidence: before almost every heap write
m Reason: support to-space invariant
m Impact: 0..57% throughput hit

m Optimizeability: medium, requires weird voodoo magic
Oredhat

Barriers: ACMP, CAS, etc

compare the ptrs; if equal, good!

cmp hrex, hrdx # if (al == a2) ...
je EQUALS

false negative? have to compare to-copy:
mov -0x8(%rex) ,%rex # al = *(al - 8)
mov -0x8 (%rdx) ,%rdx # a2 = *(a2 - 8)
cmp hrex, hrdx # if (al == a2) ...

m Incidence: on many reference comparisons (acmp, CAS)
m Reason: unequal machine ptrs = unequal Java refs!
m Impact: 0. .57 throughput hit

m Optimizeability: good, comparisons with null are trivial
O redhat

Barriers: Observations

1. Easily portable across HW architectures

m Special needs: CAS (performance largerly irrelevant)
m x86_64 and AArch64 are major implemented targets

Q redhat

Barriers: Observations K8,

1. Easily portable across HW architectures

m Special needs: CAS (performance largerly irrelevant)
m x86_64 and AArch64 are major implemented targets

2. Trivially portable across OSes

m Special needs: none
® Linux is major target
m Adopters build on Windows and Mac OS X without problems

Q redhat

Barriers: Observations K8,

1. Easily portable across HW architectures

m Special needs: CAS (performance largerly irrelevant)
m x86_64 and AArch64 are major implemented targets

2. Trivially portable across OSes

m Special needs: none
® Linux is major target
m Adopters build on Windows and Mac OS X without problems

3. VM interactions are simple enough

m Play well with compressed oops: separate fwdptr
m OS/CPU-specific things only for barriers codegen
m Throughput overheads get better with compiler opts (see later)

Q redhat

Partial

Partial: Non-Generational Workloads

Shenandoah does not need Generational Hypothesis
to hold true in order to operate efficiently

m Prime example: LRU/ARC-like in-memory caches

m It would /ike GH to be true: immediate garbage regions
can be immediately reclaimed after mark, and cycle
shortcuts

m Partial collections may use region age to focus on
«younger» regions

Q redhat

Partial: Obvious Shortcut

Pause Init Mark 0.614ms
Concurrent marking 76812M->76864M(102400M) 1.650ms
Total Garbage: 76798M
Immediate Garbage: 75072M, 2346 regions (97% of total)
Pause Final Mark 0.758ms
Concurrent cleanup 76864M->1844M(102400M) 3.346ms

Q redhat

Partial: Obvious Shortcut

Pause Init Mark 0.614ms
Concurrent marking 76812M->76864M(102400M) 1.650ms
Total Garbage: 76798M
Immediate Garbage: 75072M, 2346 regions (97% of total)
Pause Final Mark 0.758ms
Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead

Q redhat

Partial: Obvious Shortcut

Pause Init Mark 0.614ms
Concurrent marking 76812M->76864M(102400M) 1.650ms
Total Garbage: 76798M
Immediate Garbage: 75072M, 2346 regions (97% of total)
Pause Final Mark 0.758ms
Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead

Q redhat

Partial: Obvious Shortcut

Pause Init Mark 0.614ms
Concurrent marking 76812M->76864M(102400M) 1.650ms
Total Garbage: 76798M
Immediate Garbage: 75072M, 2346 regions (97% of total)
Pause Final Mark 0.758ms
Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead
3. Cycle shortcuts, because why bother...

Q redhat

Partial: Partials

Full heap concurrent cycle takes the throughput toll on
application. Idea: partial collections!

m Requires knowing what parts of heap to scan for
incoming refs (Card Tables, finer grained Remembered
Sets, etc)

m Differs from regular cycle: selects the collection set
without prior marking, thus more conservative

m Generational is the special case of partial

Q redhat

Partial: Partials, Connection Matrix

Concurrent collector allows for the very coarse «connection
matrix»: the 2D incidence matrix for region connection graph

Matrix| | | |

Regions

Q redhat

Partial: Partials, Connection Matrix

Concurrent collector allows for the very coarse «connection
matrix»: the 2D incidence matrix for region connection graph

Matrix
| [11

Regions

.

Q redhat

Partial: Partials, Connection Matrix

Concurrent collector allows for the very coarse «connection
matrix»: the 2D incidence matrix for region connection graph

Matrix
| [11

Regions

%
.....

Q redhat

Partial: Example

GC(75) Pause Init Mark 0.483ms

GC(75) Concurrent marking 33318M->45596M(51200M) 508.658ms
GC(75) Pause Final Mark 0.245ms

GC(75) Concurrent cleanup 45612M->16196M(51200M) 3.499ms

VS

GC(193) Pause Init Partial 1.913ms
GC(193) Concurrent partial 27062M->27082M(51200M) 0.108ms
GC(193) Pause Final Partial 0.570ms
GC(193) Concurrent cleanup 27086M->17092M(51200M) 15.241ms

Q redhat

Partial: Observations K8 §

1. Immediate garbage shortcuts approximate generational
m Catch-22: Most workloads are fully young

Q redhat

Partial: Observations K8 §

1. Immediate garbage shortcuts approximate generational
m Catch-22: Most workloads are fully young

2. Partial collections help when LDS is low-to-mid

m Maintaining the connectivity data means more barriers!
m Increased GC efficiency need to offset more overhead
m Optionality helps where barriers overhead is too much

Q redhat

Partial: Observations K8 §

1. Immediate garbage shortcuts approximate generational
m Catch-22: Most workloads are fully young

2. Partial collections help when LDS is low-to-mid

m Maintaining the connectivity data means more barriers!
m Increased GC efficiency need to offset more overhead
m Optionality helps where barriers overhead is too much

3. Nothing helps when LDS is high

m Generational becomes actively harmful
m Some partial policies may help to unclutter heap
m Need to handle concurrent GC failures (see later)

Q redhat

Traversal Order

Traversal Order: Spot The Trouble

Concurrent mark Concurrent evacuation Concurrent update refs

Application active Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

O redhat

Traversal Order: Spot The Trouble

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

Separate marking and evacuation phases mean collector
maintains the allocation order, not the traversal order

O redhat

Traversal Order: Traversal GC

Concurrent traversal

Application active Application active Application active

GC(57) Pause Init Traversal 1.705ms

GC(57) Concurrent traversal 14967M->15288M(16384M) 200.259ms
GC(57) Pause Final Traversal 4.028ms

GC(57) Concurrent cleanup 15311M->5563M(16384M) 16.431ms

O redhat

Traversal Order: Layout-Sensitive Test

@Param({"1", "100", "10000", "1000000"})
int size;

// map of "stze" keys/values
// backing array is Object[]
Map<String, String> map = ...;

O@Benchmark
public void test(Blackhole bh) {
for (Map.Entry<String, String> kv : map.entrySet()) {
bh. consume (kv.getKey()) ;
bh.consume (new Object());
}

}
O redhat

Traversal Order: Layout-Sensitive Test

Reference locality FTW in some cases:

map time, us/op Impr
size default traversal

1 0.02 +o.01 0.02 +o.01 +O%

100 1.06 +o0.02 0.93 +o.01 +13Y%

10000 207.25 1274 185.52 +o.36 +119%

1000000 | 48499.42 1a79.39 | 43066.18 +343.03 | +13%

Q redhat

Traversal Order: Observations K8 §

1. Allocation order is not always perfect

m Sometimes it is - the only thing that user can control
m Traversal order seems to be a fair approximation of most uses

Q redhat

Traversal Order: Observations K8 §

1. Allocation order is not always perfect

m Sometimes it is - the only thing that user can control
m Traversal order seems to be a fair approximation of most uses

2. Unintended consequence: merging all phases in one
m Makes us walk the heap once, not thrice

Q redhat

Dy

Traversal Order: Observations %!

1. Allocation order is not always perfect

m Sometimes it is - the only thing that user can control
m Traversal order seems to be a fair approximation of most uses

2. Unintended consequence: merging all phases in one
m Makes us walk the heap once, not thrice

3. Unintended consequence: fewer barriers

m Binary GC state: «idle» + «traversal»
m Barrier optimization story gets easier (see later)

Q redhat

&0

Handling Failures

Handling Failures: Practicals

Happy concurrent GC relies on collecting faster than
applications allocate: applications always see there is
available memory

m Frequently true: applications rarely do allocations only,
GC threads are high-priority, there enough space to
absorb allocations while GC is running...

m In some cases, application allocations outpace GC work -
what do we do then?
Qredhat

Handling Failures: Approaches
m Fail Hard: crash the VM
(Epsilon)

m Fail Hard to STW: assume the worst, dive into Full GC
(Shenandoah, beginning 2017)

m Fail Soft to STW: dive to STW, complete the cycle there
(Shenandoah: mid/end 2017, aka «Degenerated GC»)

m Fail Wait: wait until memory is available
(Shenandoah experiments, discontinued)

Q redhat

Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling concurrent GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into Degenerated GC
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC

Q redhat

Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling concurrent GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into Degenerated GC
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC

Q redhat

Handling Failures: Full GC

Full GC is the Maximum Credible Accident;
Parallel, STW, Sliding «Lisp 2»-style GC.

m Designed to recover from anything: 99% full regions,
heavy (humongous) fragmentation, abort from any point
in concurrent GC, etc.

m Parallel: Multi-threaded, runs on-par with Parallel GC

m Sliding: No additional memory needed + reuses fwdptr
slots to store forwarding data

Q redhat

Handling Failures: Observations &% 6

1. Handling GC failures is important part of the story

m Few people care when GC performs well. When it fails? Oh my!
m Most tuning guides would talk about avoiding failures

Q redhat

Handling Failures: Observations &% 6

1. Handling GC failures is important part of the story

m Few people care when GC performs well. When it fails? Oh my!
m Most tuning guides would talk about avoiding failures

2. Graceful degradation is key

m Observability is the part of grace
m If you are stalling the application threads, honestly say so!

Q redhat

Handling Failures: Observations &% 6

1. Handling GC failures is important part of the story

m Few people care when GC performs well. When it fails? Oh my!
m Most tuning guides would talk about avoiding failures

2. Graceful degradation is key

m Observability is the part of grace
m If you are stalling the application threads, honestly say so!

3. Failure paths performance is important

m «Your system melted down because you have misconfigured
our oh-so-perfect product» flies only so much...
m Unconditionally failing to STW is performance diagnostics tool!

Q redhat

Compiler Support

Compiler Support: Overview

The key thing to achieve low pauses
with decent throughput performance
are compiler optimizations?

2Also the major source of interesting bugs

Q redhat

Compiler Support: Overview

The key thing to achieve low pauses
with decent throughput performance
are compiler optimizations?

Several categories:
1. Generic optimizations that help all GCs
2. Semi-generic optimizations that unblock GC-specific fixes
3. Special optimizations for specific GCs

2Also the major source of interesting bugs @ rednat

Compiler Support: In Numbers

C1 C2

Test Par | Shen | %diff | Par | Shen | %diff
Compiler* 753 634 | -16% | 1178 | 1009 | -14%

\ Compress 1265 832 | -34% | 1533 1334 | -13%
‘} Crypto* 649 509 | -22% | 2273 2210 -3%
i Derby 742 649 | -12% | 1609 1475 | -8%
MpegAudio | 291 199 | -32% | 475 416 | -12%
Scimark* 303 232 | -23% 521 486 -7%

Serial 14473 | 11272 | -22% | 21890 | 19604 | -10%
Sunflow 255 196 | -23% | 285 264 -7%

Xml* 510 430 | -16% | 1821 1568 | -14%

C1 codegens good barriers, but C2 also does high-level optimizations

Q redhat

Compiler Support: Long Loops

int[] arr;

O@Benchmark

public int test() throws InterruptedException {
int r = 0;
for (int i : arr)
r = (i *x 1664525 + 1013904223 + r) % 1000;
return r;

java -XX:+UseShenandoahGC -Dsize=10’000’000
Performance: 35.832 +- 1.024 ms/op

Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) = 0.02 s (a 734 us)

O redhat

Compiler Support: Loop Strip Mining?®

Make a smaller bounded loop without the safepoint polls
inside the original one:

for (c : [0, L] by M) {

for (¢ : [0, L]) { for (k : [0: M]) {
use(c) ; s use(c + k);
<safepoint poll> }
} <safepoint poll>
}

Amortize safepoint poll costs without sacrificing TTSP!

3https://bugs.openjdk. java.net/browse/JIDK-8186027 @ rednat

https://bugs.openjdk.java.net/browse/JDK-8186027

Compiler Support: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024

Total Pauses (G)
Total Pauses (N)

0.69 s (a
0.02 s (a

ms/op
= 26531 us)
= 734 us)

O redhat

Compiler Support: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024 ms/op
Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) 0.02 s (a 734 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1
Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) = 0.02 s (a = 811 us)
Total Pauses (N) = 0.02 s (a = 670 us)

O redhat

Compiler Support: Loop Strip Mining

-XX:+UseShenandoahGC -XX:-UseCLS
Performance: 35.832 +- 1.024 ms/op
Total Pauses (G) = 0.69 s (a = 26531 us)
Total Pauses (N) 0.02 s (a 734 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1
Performance: 38.043 +- 0.866 ms/op

Total Pauses (G) = 0.02 s (a = 811 us)
Total Pauses (N) = 0.02 s (a = 670 us)

-XX:+UseShenandoahGC -XX:+UseCLS -XX:LSM=1000
Performance: 34.660 +- 0.657 ms/op

Total Pauses (G) = 0.03 s (a = 842 us)

Total Pauses (N) = 0.02 s (a = 682 us)

O redhat

Compiler Support: Switch Profiling*

for (int pos = 0; pos < size; pos++) {
int bl = buf[pos] & O0xFF;
switch (bl >> 4) {
case 0: case 1: case 2: case 3:
case 4: case 5: case 6: case 7:

cbuf [cpos++] = ...; break;
case 12: case 13:
cbuf [cpos++] = ...; break;
case 14:
cbuf [cpos++] = ...; break;
default: throw new IllegalStateException();

+
}

http://mail.openjdk. java.net/pipermail/shenandoah-dev/2018-February/004886.html ‘ redhat

4

http://mail.openjdk.java.net/pipermail/shenandoah-dev/2018-February/004886.html

Compiler Support: Switch Profiling*

for (int pos = 0; pos < size; pos++) {
int bl = buf[pos] & OxFF,
switch (bl >> 4) {
case 0: case 1: case 2: case 3:
case 4: case 5: case 6: case 7:
cbuf [cpos++] = ...; break;
case 12: case 13:
cbuf [cpos++] = ...; break;

vos++] Most frequent branch,
default: t but the absence of profiling
} messes everything up

4 & rednat

http://mail.openjdk. java.net/pipermail/shenandoah-dev/2018-February/004886.html

http://mail.openjdk.java.net/pipermail/shenandoah-dev/2018-February/004886.html

Compiler Support: Switch Profiling, #2

GC Score, ns/op Improv
Baseline ‘ Switch Prof

) Shenandoah | 3963 +w| 681 +1 | 5.8x

m Very profitable optimization

O redhat

Compiler Support: Switch Profiling, #2

GC Score, ns/op Improv

Baseline | Switch Prof
th Parallel | 3084 +10 600 +10 5.1x
'3 Shenandoah | 3963 +10| 681 <10 5.8x

m Very profitable optimization
m Generic optimization: helps everyone

O redhat

Compiler Support: Switch Profiling, #2

GC Score, ns/op Improv
Baseline | Switch Prof
> Parallel | 3084 +10 600 +10 5.1x
"3 Shenandoah | 3963 +10| 681 <10 5.8x
-28% -13%

m Very profitable optimization
m Generic optimization: helps everyone
m Helps some GCs better: e.g. barrier moves

Q redhat

Compiler Support: Common Up Happy Paths

void m(Holder hld) { this.obj = hld.obj; 1}

We have:

mov
mov
cmpb
jnz
cmpb
jnz
mov
mov
test
ret

-0x8(%HLD) , %HLD
0x10(%HLD), %V

0x2, (GC-STATE)
SATB-ENABLED

0x4, (GC-STATE)
EVAC-ENABLED
-0x8(%THIS), %THIS

%V, 0x10(%THIS)
0x13371337 (%rip) , %rax

Q redhat

Compiler Support: Common Up Happy Paths

void m(Holder hld) { this.obj = hld.obj; 1}

We have:

mov
mov
cmpb
jnz
cmpb
jnz
mov
mov
test
ret

-0x8(%HLD) , %HLD
0x10(%HLD), %V

0x2, (GC-STATE)
SATB-ENABLED

0x4, (GC-STATE)
EVAC-ENABLED
-0x8(%THIS), %THIS

%V, 0x10(%THIS)
0x13371337 (%rip) , %rax

We can do:

cmpb
jnz
mov
mov
test
ret

0x0, (GC-STATE)
HEAP-UNSTABLE

0x10 (%HLD) , %V
%V, 0x10(%THIS)

0x13371337 (rip), %rax

O redhat

/“
Compiler Support: Observations Q

1. Compiler optimizations make barrier overheads better
m The hope is to get it down to low-single-digit percents

Q redhat

Compiler Support: Observations Q20

1. Compiler optimizations make barrier overheads better
m The hope is to get it down to low-single-digit percents

2. Compiler optimizations are high-level

m No need to care about OS/CPU specific things
m Helps things beyond Shenandoah

Q redhat

Compiler Support: Observations Q20

1. Compiler optimizations make barrier overheads better
m The hope is to get it down to low-single-digit percents

2. Compiler optimizations are high-level

m No need to care about OS/CPU specific things
m Helps things beyond Shenandoah

3. Compiler diffs makes perf comparisons uber-hard

m Different baselines! Parallel GC is faster where: jdk/jdk,
jdk/hs, shenandoah/jdk10, Oor zgc/zgc?
m The way out is to put everything into single repo?

Q redhat

Conclusion

Conclusion: Ready for Experimental Use

Try it.
Break it.
Report the successes and failures.

https://wiki.openjdk. java.net/display/shenandoah/Main

Q redhat

https://wiki.openjdk.java.net/display/shenandoah/Main

Backup

Backup: VM Support

Pauses < 1 ms require more runtime support

Some examples:

m Time-To-SafePoint takes about that even without loopy
code

m Safepoint auxiliaries: stack scans for method aging takes
> 1 ms, cleanup can easily take >> 1 ms

m Lots of roots, many are hard/messy to scan concurrently
or in parallel: StringTable, synchronizer roots, etc.

Q redhat

Backup: STW Woes

Pauses ~ 1 ms leave little time budget to deal with,
but need to scan roots, cleanup runtime stuff, walk over
regions...

Consider:

m Thread wakeup latency is easily more than 200 us:
parallelism does not give you all the bang - some
parallelism is still efficient

m Processing 10K regions means taking 100 ns per region.
Example: you can afford marking regions as «dirty», but

cannot afford actually recycling them during the pause‘
> redhat

Backup: Humongous and 2" allocs

new byte[1024%1024] is the best fit for regionalized GC?

| 1 (W] | TN] W] [[N | W]] (W] [(WM | (NN [|

m Actually, in G1-style humongous allocs, the worst fit:
objects have headers, and 2%-sized alloc would barely
not fit, wasting one of the regions

Q: Can be redone with segregated-fits freelist maintained

separately?
Q redhat

Backup: Almost Concurrent Works Fine!

LRUFragger, 100 GB heap, varying LDS:

Parallel

CMS

Shenandoah

,,,,,,,,,,,,,,,,,

10*

IPLARIN
L]

Pause time, sec (all safepoints)

Backup: Almost Concurrent Works Fine!

LRUFragger, 100 GB heap, varying LDS:

GC Pause Time, %

Operation Time, sec

. IIERDeY

60 Ve . - N
. +/ /I . i
)

L / :

0

20

40 60
Live Data Size, % of heap

80

100

gce Gle Parallels CMSe Shenandoah

0 20 40 60 80 100
Live Data Size, % of heap

gow Gl Parallel CMSe Shenandoaggy .y

	Overview
	Basics
	Footprint
	Barriers
	Partial
	Traversal Order
	Handling Failures
	Compiler Support
	Conclusion
	Backup

