
Using Developer Testing to Boost
the Quality of Your Code

Jfokus 2018
Alexander Tarlinder

The Goal of This Talk

Make you DO
developer

testing back at
homeDescribe & sell

developer testing

Give s precise quality
vocabulary

Explain the scope of a
developer’s

responsibility

Map out what areas
to explore by throwing

in some theory

About Me

http://developertesting.rocks

http://www.techbookreader.com
http://dictionaryofagile.org

Potentially Shippable Product Increment

“Automate everything”

“Testing to support development”

“Build quality in”

“QA should find nothing”

Test-first development and courage

The Clock’s Ticking

Scrum: weeks

Kanban: days

Continuous delivery: hours

Illustration: Teresia Tarlinder

Time

The Regression Testing Challenge

1 2 3

4 5

6 7 8

Sprint 1

Sprint 2

Sprint 3

Sprint Build* Test

1 1+2+3 1+2+3

2 4+5 1+2+3+4+5+6

3 6+7+8 1+2+3+4+5+6+7+8

*) Building new features requires
refactoring old ones.

Features

Unit

UI

Service

Unit

UI

Integration

API

Manual

Ex
ec

ut
io

n
tim

e

Co
st

Er
ro

r l
oc

al
iza

tio
n

Hopefully a recap

Unit Tests

§ Fully automated
§ Self-verifying
§ Idempotent
§ Run in isolation
§ Fast

Unit Tests: naming

UnitOfWork_StateUnderTest_ExpectedBehavior
Checkout_LoyalCustomers_Get5PercentDiscount()

BDD-style: something should
shouldGive5PercentDiscountToLoyalCustomers()

A definitive statement
loyalCustomersGet5PercentDiscount()

Unit Test Structure

§ Arrange → Act → Assert
§ Given → When → Then
§ Setup → Exercise → Verify → Teardown

Arrange Act Assert

Syntactic vs Semantic Assertions

assertArrayEquals(new String[] {"Hello", "Jfokus", "2018"},
"Hello Jfokus 2018".split(" "));

String[] words = "Hello Jfokus 2018".split(" ");
assertEquals("Hello", words[0]);
assertEquals("Jfokus", words[1]);
assertEquals("2018", words[2]);

But how many???

If this happens …
Or this …
Or that …
Otherwise just …

0 17 18 64 65 120-MAXINT -1 121 MAXINT

Decision Tables

Age Investigation Grant loan
5 — No
17 — No
18 Yes Yes
18 No No
30 — Yes
64 — Yes
65 Yes Yes
65 No No
69 Yes Yes
70 — No

http://developertesting.rocks

State Transition Testing

§ Parsers
§ Flows/Wizards
§ Lyfecycles

Stopped Playing

RewindingFast
forward

http://developertesting.rocks

So there you have it!

UI

Service

101010

Fundamental Testing
Techniques Unit Testing

Understanding Testability and its Drivers

Fundamental Testing
Techniques Unit Testing

My system can’t be
tested!

Illustration: Teresia Tarlinder

Portability Performance

Maintainability

Testability
Controllability

“Can we set the system to a certain state?”

Observability

“Can we see what’s going on?”

Smallness

“Let’s not have too much of it.”

Security Usability

Smallness

Few features

§ Active product
ownership

§ Pruning

Small codebase

§ Singularity
§ Level of abstraction
§ Efficiency
§ Reuse

http://developertesting.rocks

Controllability

“Can we set the system to a certain state?”

Observability

“Can we see what’s going on?”

Smallness

“Let’s not have too much of it.”

Architecture

Design

Single line of code

Product ownership

Legacy code is the #1 reason to avoid developer testing
(#2 reason being not knowing what to test)

public class LegacySystem {
public LegacySystem() {

…
new UntestableStuff().performLongOperation();
…

}
}

Dependency Breaking

public class LegacySystem {
static UntestableStuff collaborator;
public LegacySystem() {

…
collaborator.performLongOperation();
…

}
}

public class LegacySystem {
public LegacySystem(UntestableStuff collaborator) {

…
collaborator.performLongOperation();
…

}
}

Dependency Breaking
public class LegacySystem {

private UntestableStuff collaborator;
public void doIt() {

…
collaborator.performLongOperation();
…

}
public void setUntestableStuff(UntestableStuff collaborator) {

this.collaborator = collaborator;
}

}

public class LegacySystem {
public void doIt() {

…
getUntestableStuff().performLongOperation();
…

}
UntestableStuff getUntestableStuff() {

return new UntestableStuff()
}

}

NOT
EVERYTHING

IS A *#!
MOCK!

Test Doubles

Mocks Stubs

Fakes Spies

Dummies

§ Can make tests fail
§ Verify indirect

output
§ Test interactions

§ Can’t make tests fail
§ Provide indirect input

§ Good names for
irrelevant arguments

§ The in-memory
database that you
never use anyway

§ Created by mocking
frameworks and
pretend to be mocks

Understanding Testability and its Drivers

Fundamental Testing
Techniques Unit Testing

Employment of Test Doubles

Understanding
Dependencies and

Dependency Breaking

Getting there…

Data-driven Testing
childrenAged5NotAllowedToTakeALoan()

childrenAged17NotAllowedToTakeALoan()

adultsAged18RequireAnInvestigation()

adultsAged18AllowedToTakeALoanAfterInvestigation()

adultsAged30AllowedToTakeALoan()

adultsAged64AllowedToTakeALoan()

adultsAged65AllowedToTakeALoanAfterInvestigation()

seniorsAged69AllowedToTakeALoanAfterInvestigation()

seniorsAged70NotAllowedToTakeALoan()

Parameterized tests
def "Loan policy takes age and an investigation into account"() {

given: "Our loan policy"
def loanPolicy = new LoanPolicy()

when: "It's applied to a customer's age and the presence of an investigation"
def result = loanPolicy.applyTo(age, investigationDone)

then: "It tells whether a loan is approved"
result == approved

where:
age | investigationDone || approved
5 | false || false
17 | false || false
18 | true || true
18 | false || false
30 | false || true
64 | false || true
65 | true || true
69 | true || true
70 | true || false

}

Theory Tests
{5, 17, 18, 30, 64, 65, 69, 70} × {true, false} =

(5, true)
(5, false)
(17, true)
(17, false)
(18, true)
(18, false)
(30, true)
(30, false)
(64, true)
(64, false)
(65, true)
(65, false)
(69, true)
(69, false)
(70, true)
(70, false)

Data points

Cartesian product

Test-driven Development

- Patterns -

o Fake it
o The obvious
o Triangulate

– Test Order –
1. Degenerate case
2. Happy path
3. Explore & learn
4. Error handing

Red

GreenRefactor

Higher-level tests

§ Enclosed in transactions
§ Services or components
§ Interact with other systems
§ Run through the UI
§ Invoke another system

Properties of Higher-level Tests
Complexity

Stability

Error localization

Performance

Target audience

Environmental
dependence

Understanding Testability and its Drivers

Fundamental Testing
Techniques Unit Testing

Employment of Test DoublesData-driven Testing

Understanding
Dependencies and

Dependency Breaking

Test-driven Development

Programming by
contract

Higher-level tests: Testing beyond Unit Testing

The Core Competencies of Developer
Testing

The Developer Testing Formula

qUnderstand the Core Competencies
qDetermine a profile of your system based on

§ Architecture
§ Mission criticality
§ Life expectancy

qApply the Core Competencies accordingly

Understanding Testability and its Drivers

Fundamental Testing
Techniques Unit Testing

Employment of Test Doubles

Test-driven Development

Understanding Testability and its Drivers

Fundamental Testing
Techniques Unit Testing

Employment of Test DoublesData-driven Testing

Understanding
Dependencies and

Dependency Breaking

Test-driven Development

Programming by
contract

Higher-level tests: Testing beyond Unit Testing

Understanding Testability and its Drivers

Fundamental Testing
Techniques Unit Testing

Data-driven Testing

Programming by
contract

Higher-level tests: Testing beyond Unit Testing

Higher-level tests: Testing beyond Unit Testing

Test-driven Development

Employment of Test Doubles

Understanding
Dependencies and

Dependency Breaking

Data-driven Testing

Programming by
contract

Understanding
Dependencies and

Dependency Breaking

Profile 1: Early stage green field

Profile 2: Classic legacy Profile 3: Business rule-heavy system

Illustration: Teresia Tarlinder

Summary

Developer testing is the systematic and intentional
use of testing tools and techniques while coding.

There are 9 Core
Competencies

Further details: http://developertesting.rocks

