
When you need to add
Deep Learning to raise your

next round of funding
@holdenkarau

Photo by: brando

https://twitter.com/holdenkarau

Holden:
● My name is Holden Karau
● Prefered pronouns are she/her
● Developer Advocate at Google
● Apache Spark PMC :)
● previously IBM, Alpine, Databricks, Google, Foursquare & Amazon
● co-author of Learning Spark & High Performance Spark
● @holdenkarau
● Slide share http://www.slideshare.net/hkarau
● Linkedin https://www.linkedin.com/in/holdenkarau
● Github https://github.com/holdenk
● Spark Videos http://bit.ly/holdenSparkVideos

https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos

Who I think you wonderful humans are?
● Nice enough people
● Don’t mind pictures of cats
● Might know some the different distributed systems talked about
● Possibly know some Python or R

Lori Erickson

https://www.flickr.com/photos/lorika/

What will be covered?
● Why people care about deep learning
● What the different (Spark-ish) deep learning libraries are
● Why the deep learning state of Spark is kind of sad
● How we can make it more awesome

Why people care about deep learning?
● Cat pictures

○ Colourizing cat pictures, generating cat pictures, finding cat pictures.

● Trying to raise more money in San Francisco
● Transfer learning (aka if this can predict cats maybe it can find squirrels)
● I built a data lake and now I need to justify it
● Keeping resume up to-date

Umberto Salvagnin

likeaduck

https://github.com/aleju/cat-generator
https://www.wired.com/2012/06/google-x-neural-network/

Spark ML Pipelines

Pipeline
Stage ?data

Pipeline
Stage

Pipeline
Stage

Pipeline
Stage

...

Pipeline

Ray Bodden

Spark ML Pipelines

Pipeline
Stage ?data

Pipeline
Stage

Pipeline
Stage

Pipeline
Stage

...

Pipeline

data ?

Also a pipeline stage!

Ray Bodden

Two main types of pipeline stages

Pipeline
Stage ?data

Transformer Estimatordata data data transformer

Reboots

Michael Coghlan

How are transformers made?

Estimator data

class Estimator extends PipelineStage {
 def fit(dataset: Dataset[_]): Transformer = {
 // magic happens here
 }
}

Transformer/
Model

peasap

Old-skool ML (Decision Trees)
● Keeping track of intermediate data and calling fit/transform on every stage is

way too much work
● This problem is worse when more stages are used
● Use a pipeline instead!

val assembler = new VectorAssembler()

assembler.setInputCols(Array("gre", "gpa", "prestige"))

val sb = new StringIndexer()

sb.setInputCol("admit").setOutputCol("label")

val dt = new DecisionTreeClassifier()

val pipeline = new Pipeline()

pipeline.setStages(Array(assembler, sb, dt))

val pipelineModel = pipeline.fit(df)

jasonwoodhead23

Yay! You have an ML pipeline!

Photo by Jessica Fiess-Hill

What are your options to raise money?
● DL4J

○ Relatively deep spark integration
○ Largely Java based as the name implies

● Big DL
● Tensorflow

○ TensorFlowOnSpark, TensorFlow_Scala, TensorFrames, ...

● Keras
● PyTorch (sorry I meant JTorch)
● MXNet
● A linear regression library that you call deep learning and hope no one notices
● etc.

anokarina

https://deeplearning4j.org/
https://github.com/intel-analytics/BigDL
https://www.tensorflow.org/
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/databricks/tensorframes
https://keras.io/
http://pytorch.org/
https://github.com/ctongfei/JTorch
https://mxnet.apache.org/

So wait do I have to learn Python?
● No…..
● But you will have to (hopefully indirectly) use it / JNI / Py4J or similar
● But if you want to learn Python you can!

Big DL on Spark - Training (custom)
val data = // Data prep goes here. How long could that take?

val Array(trng, chk) = data.randomSplit(Array(split, 1 - split))

Optimizer(

 model = buildModel(classNum), sampleRDD = trng,

 criterion = new ClassNLLCriterion[Float](), batchSize = batch

).setOptimMethod(method)

 .setValidation(Trigger.everyEpoch, valRDD, Array(new

Top1Accuracy[Float]), param.batchSize)

 .setEndWhen(Trigger.maxEpoch(1))

 .optimize()

Tomomi

Big DL on Spark - Prediction (ML pipeline based)
val model = loadModel(param)

val valTrans = new DLClassifierModel(model, Array(3, imageSize,

imageSize))

 .setBatchSize(param.batchSize)

 .setFeaturesCol("features")

 .setPredictionCol("predict")

valTrans.transform(data)

DL4J - Hey this looks kind of similar….
JavaRDD<Dataset> = // Data prep goes here.

TrainingMaster trainingMaster = new ParameterAveragingTrainingMaster.Builder(1)

 // Optional config options go here.

 .build();

//Create the SparkDl4jMultiLayer instance

SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, networkConfig,

trainingMaster);

//Fit the network using the training data:

sparkNetwork.fit(trainingData);

ponafotkas

DL4J - Pipelines?

K.G.Hawes

greyloch

TensorFlow - So many options, most not* fun in JVM
● TensorFlow Scala - Works in Scala not a lot of distributed support
● TensorFlowOnSpark - Works in Spark but assumes Python
● Regular TensorFlowJava - not guaranteed to be API stable, no Spark magic
● Hops Tensorflow (python only)
● TensorFrames - Experimental only, JVM support-ish (can’t define new graphs

in JVM but can load Python graphs)
● Horovod (python only for now)

https://github.com/yahoo/TensorFlowOnSpark
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/java/README.md
https://github.com/hopshadoop/hops-tensorflow
https://github.com/databricks/tensorframes
https://github.com/uber/horovod

Ok but I want pipelines, they sound cool*
● Spark-deep-learning seems to be the primary package for exposing

distributed DL libs in a Spark pipeline like interface
● It’s Python only, buuuuut well the next slide might give you some ideas about

how you can join me** in the adventures to fix this.

Kainoa

https://github.com/databricks/spark-deep-learning

What about the next new shiny tool?
● Probably going to be built with Python APIs
● Spark has an ML pipeline API we can implement
● With a bit of work we can expose arbitrary* Python stages into Scala & Java

Spark
● See sparklingml for examples (currently basic spacy)

https://github.com/sparklingpandas/sparklingml

Exposing a Spark Python into the JVM:*
def func(cls, *args):

 lang = args[0]

 def inner(inputString):

 """Tokenize the inputString using spacy for

 the provided language."""

 nlp = SpacyMagic.get(lang)

 return list(map(lambda x: x.text,

list(nlp(inputString))))

 return inner

*See sparklingml repo for the questionable magic that wires this together.

Cat by moonwhiskers

Using it in the JVM*:
val transformer = new SpacyTokenizePython()

transformer.setLang("en")

val input = spark.createDataset(

 List(InputData("hi boo"), InputData("boo")))

transformer.setInputCol("input")

transformer.setOutputCol("output")

*See sparklingml repo for the questionable magic that wires this together.

Marie

Ok so I raised some money buuuut...
● It’s kind of slow :(
● You enjoy copying your data around right?
● Why does it take so long to predict?
● Now my investors/interns/engineers want to use [X] deep learning library

Andrew Mager

PySpark - Everything old is new again
● The Python interface to Spark
● The very fun basis to integrate with many deep learning libraries
● Same general technique used as the bases for the C#, R, Julia, etc.

interfaces to Spark
● Fairly mature, integrates well-ish into the ecosystem, less a Pythonrific API
● Has some serious performance hurdles from the design

A quick detour into PySpark’s internals

+ + JSON

Spark in Scala, how do we talk to Py libs?

● Py4J + pickling + JSON and magic
○ Py4j in the driver
○ Pipes to start python process from java exec
○ cloudPickle to serialize data between JVM and python executors

(transmitted via sockets)
○ Json for dataframe schema

● Data from Spark worker serialized and piped to Python
worker --> then piped back to jvm
○ Multiple iterator-to-iterator transformations are still pipelined :)
○ So serialization happens only once per stage

kristin klein

So what does that look like?

Driver

py4j

Worker 1

Worker K

pipe

pipe

So how does this impact DL?

● Double serialization cost makes everything more
expensive

● Native memory isn’t properly controlled, can over
container limits if deploying on YARN or similar

● Error messages make ~0 sense
● Spark Features aren’t automatically exposed, but

exposing them is normally simple

The “future”*: faster interchange
● By future I mean availability starting in the next 3-6 months (with more

improvements after).
○ Yes much of this code exists, it just isn’t released yet so I’m sure we’ll find all sorts of bugs

and ways to improve.
○ Relatedly you can help us test in Spark 2.3 when we start the RC process to catch bug early!

● Unifying our cross-language experience
○ And not just “normal” languages, CUDA counts yo

Tambako The Jaguar

Andrew Skudder

*Arrow: likely the future. I really hope so. Spark 2.3 and beyond!

* *

What does the future look like?*

*Source: https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html.

*Vendor
benchmark.Verify
before depending

on.

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html

Arrow (a poorly drawn big data view)

Logos trademarks of their respective projects

Rewriting your friends’ Python code
spark.catalog.registerFunction(

 "add", lambda x, y: x + y, IntegerType())

=>

add = pandas_udf(lambda x, y: x + y, IntegerType())

Why now?
● There’s been better formats/options for a long time
● JVM devs want to use libraries in other languages with lots of data

○ e.g. startup + Deep Learning + ? => profit

● Arrow has solved the chicken-egg problem by building not just the chicken &
the egg, but also a hen house

Andrew Mager

BEAM: Beyond the JVM
● Adopting a new architecture for going beyond the JVM, come join us
● tl;dr : uses grpc / protobuf

○ Similar to the common design but with more efficient representations (often)

● But exciting new plans to unify the runners and ease the support of different
languages (called SDKS)

○ See https://beam.apache.org/contribute/portability/

● If this is exciting, you can come join me on making BEAM work in Python3
○ Yes we still don’t have that :(
○ But we're getting closer & you can come join us on BEAM-2874 :D

● No mixed pipeline support right now (would make DL in “Java” easier)

https://beam.apache.org/contribute/portability/
https://issues.apache.org/jira/browse/BEAM-2784

Before I leave: regression is cool

● org.apache.spark.ml.classification
○ BinaryLogisticRegressionClassification, DecissionTreeClassification,

GBTClassifier, etc.
● org.apache.spark.ml.regression

○ DecissionTreeRegression, GBTRegressor, IsotonicRegression,
LinearRegression, etc.

● org.apache.spark.ml.recommendation
○ ALS

● You can also check out spark-packages for some more
● But possible not your special AwesomeFooBazinatorML

PROcarterse Follow

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.classification.package
http://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/regression/package.html
http://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/recommendation/package.html
https://spark-packages.org/?q=tags%3A%22Machine%20Learning%22

Lots of data prep stages:

● org.apache.spark.ml.feature
○ ~30 elements from VectorAssembler to Tokenizer, to PCA, etc.

● Often simpler to understand while getting started with
building our own stages

PROcarterse Follow

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.feature.package

Custom Estimators/Transformers in the Wild

Classification/Regression
xgboost

Deep Learning!
dl4j-spark (deprecated)

Feature Transformation
Lucene transformers

Spacy
spark-nlp

Joannie Dennis

References
● Apache Arrow: https://arrow.apache.org/
● Brian (IBM) on initial Spark + Arrow

https://arrow.apache.org/blog/2017/07/26/spark-arrow/
● Li Jin (two sigma)

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspar
k.html

● Bill Maimone
https://blogs.nvidia.com/blog/2017/06/27/gpu-computation-visualization/

PROR. Crap Mariner

https://arrow.apache.org/
https://arrow.apache.org/blog/2017/07/26/spark-arrow/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://blogs.nvidia.com/blog/2017/06/27/gpu-computation-visualization/

Learning Spark

Fast Data
Processing with
Spark
(Out of Date)

Fast Data
Processing with
Spark
(2nd edition)

Advanced
Analytics with
Spark

Spark in Action

High Performance SparkLearning PySpark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.highperformancespark.com

High Performance Spark!

You can buy it today, the O’Reilly folks have it upstairs (&
so does Amazon).

Only one chapter on non-JVM and nothing on Arrow or
Deep Learning, I’m sorry.

Cats love it*
*Or at least the box it comes in. If buying for a cat, get print
rather than e-book.

https://www.amazon.nl/High-Performance-Spark-Practices-Optimizing-ebook/dp/B0725YT69J/ref=sr_1_1?ie=UTF8&qid=1517738932&sr=8-1&keywords=high+performance+spark

Spark Videos

● Apache Spark Youtube Channel
● My Spark videos on YouTube -

○ http://bit.ly/holdenSparkVideos
● Spark Summit 2014 training
● Paco’s Introduction to Apache Spark

https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
https://spark-summit.org/2014/training
http://bit.ly/intro-to-apache-spark-paco-video

And some upcoming talks:

● Strata San Jose
● Strata London
● Kafka Summit London
● QCon Brasil
● QCon AI SF
● Know of interesting conferences/webinar things that

should be on my radar? Let me know!

k thnx bye :)

If you care about Spark testing and
don’t hate surveys:
http://bit.ly/holdenTestingSpark

I need to give a testing talk next
month, help a “friend” out.

Will tweet results
“eventually” @holdenkarau

Do you want more realistic
benchmarks? Share your UDFs!
http://bit.ly/pySparkUDF

Pssst: Have feedback on the presentation? Give me a
shout (holden@pigscanfly.ca) if you feel comfortable doing
so :)

Give feedback on this presentation
http://bit.ly/holdenTalkFeedback

http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca
http://bit.ly/holdenTalkFeedback

Bonus Slides

Maybe you ask a question and we go here :)

Installing the Python dependencies?

● Your machines probably already have python
● But they might not have “special_business_logic”

○ Very special business logic, no one wants change fortran code*.
● Option 1: Talk to your vendor**
● Option 2: Try some open source software
● Option 3: Containers containers containers***
● We’re going to focus on option 2!

*Because it’s perfect, it is fortran after all.

** I don’t like this option because the vendor I work for doesn’t have an answer.

*** Great for your resume!

coffee_boat to the rescue*
You can tell it's alpha cause were installing from github

!pip install --upgrade

git+https://github.com/nteract/coffee_boat.git

Use the coffee boat

from coffee_boat import Captain

captain = Captain(accept_conda_license=True)

captain.add_pip_packages("pyarrow", "edtf")

captain.launch_ship()

sc = SparkContext(master="yarn")

You can now use pyarrow & edtf

captain.add_pip_packages("yourmagic")

You can now use yourmagic in transformations!

What’s still going to hurt?
● Per-record streaming

○ Arrow is probably less awesome for serialization
○ But it’s still better than we had before

● Debugging is just going to get worse
● Custom data formats

○ Time to bust out the C++ code and a bottle of scotch / matte as appropriate
○ Or just accept the “legacy” performance

bryanbug

We can do that w/Kafka streams..

● Why bother learning from our mistakes?
● Or more seriously, the mistakes weren’t that bad...

Our “special” business logic
def transform(input):

 """

 Transforms the supplied input.

 """

 return str(len(input))

Pargon

Let’s pretend all the world is a string:
 override def transform(value: String): String = {

 // WARNING: This may summon cuthuluhu

 dataOut.writeInt(value.getBytes.size)

 dataOut.write(value.getBytes)

 dataOut.flush()

 val resultSize = dataIn.readInt()

 val result = new Array[Byte](resultSize)

 dataIn.readFully(result)

 // Assume UTF8, what could go wrong? :p

 new String(result)

 }
From https://github.com/holdenk/kafka-streams-python-cthulhu

https://github.com/holdenk/kafka-streams-python-cthulhu

Then make an instance to use it...
val testFuncFile =

 "kafka_streams_python_cthulhu/strlen.py"

stream.transformValues(

 PythonStringValueTransformerSupplier(testFuncFile))

// Or we could wrap this in the bridge but thats effort.

From https://github.com/holdenk/kafka-streams-python-cthulhu

https://github.com/holdenk/kafka-streams-python-cthulhu

Let’s pretend all the world is a string:
def main(socket):

 while (True):

 input_length = _read_int(socket)

 data = socket.read(input_length)

 result = transform(data)

 resultBytes = result.encode()

 _write_int(len(resultBytes), socket)

 socket.write(resultBytes)

 socket.flush()

From https://github.com/holdenk/kafka-streams-python-cthulhu

https://github.com/holdenk/kafka-streams-python-cthulhu

What does that let us do?

● You can add a map stage with your data scientists
Python code in the middle

● You’re limited to strings*
● Still missing the “driver side” integration (e.g. the

interface requires someone to make a Scala class at
some point)

● Probably not any good for deep learning (you likely want
bytes)

