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Holden:
● My name is Holden Karau
● Prefered pronouns are she/her
● Developer Advocate at Google
● Apache Spark PMC :)
● previously IBM, Alpine, Databricks, Google, Foursquare & Amazon
● co-author of Learning Spark & High Performance Spark
● @holdenkarau
● Slide share http://www.slideshare.net/hkarau 
● Linkedin https://www.linkedin.com/in/holdenkarau 
● Github https://github.com/holdenk 
● Spark Videos http://bit.ly/holdenSparkVideos 

https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos




Who I think you wonderful humans are?
● Nice enough people
● Don’t mind pictures of cats
● Might know some the different distributed systems talked about
● Possibly know some Python or R

Lori Erickson

https://www.flickr.com/photos/lorika/


What will be covered?
● Why people care about deep learning
● What the different (Spark-ish) deep learning libraries are
● Why the deep learning state of Spark is kind of sad
● How we can make it more awesome



Why people care about deep learning?
● Cat pictures

○ Colourizing cat pictures, generating cat pictures, finding cat pictures.

● Trying to raise more money in San Francisco
● Transfer learning (aka if this can predict cats maybe it can find squirrels)
● I built a data lake and now I need to justify it
● Keeping resume up to-date

Umberto Salvagnin

likeaduck

https://github.com/aleju/cat-generator
https://www.wired.com/2012/06/google-x-neural-network/


Spark ML Pipelines
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Two main types of pipeline stages

Pipeline 
Stage ?data

Transformer Estimatordata data data transformer

Reboots

Michael Coghlan



How are transformers made?

Estimator data

class Estimator extends PipelineStage {
  def fit(dataset: Dataset[_]): Transformer = {
    // magic happens here
  }
}

Transformer/
Model

peasap



Old-skool ML (Decision Trees)
● Keeping track of intermediate data and calling fit/transform on every stage is 

way too much work
● This problem is worse when more stages are used
● Use a pipeline instead!

val assembler = new VectorAssembler()

assembler.setInputCols(Array("gre", "gpa", "prestige"))

val sb = new StringIndexer()

sb.setInputCol("admit").setOutputCol("label")

val dt = new DecisionTreeClassifier()

val pipeline = new Pipeline()

pipeline.setStages(Array(assembler, sb, dt))

val pipelineModel = pipeline.fit(df)

jasonwoodhead23



Yay! You have an ML pipeline!

Photo by Jessica Fiess-Hill



What are your options to raise money?
● DL4J

○ Relatively deep spark integration
○ Largely Java based as the name implies

● Big DL
● Tensorflow

○ TensorFlowOnSpark, TensorFlow_Scala, TensorFrames, ...

● Keras
● PyTorch (sorry I meant JTorch)
● MXNet
● A linear regression library that you call deep learning and hope no one notices
● etc.

anokarina

https://deeplearning4j.org/
https://github.com/intel-analytics/BigDL
https://www.tensorflow.org/
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/databricks/tensorframes
https://keras.io/
http://pytorch.org/
https://github.com/ctongfei/JTorch
https://mxnet.apache.org/


So wait do I have to learn Python?
● No…..
● But you will have to (hopefully indirectly) use it / JNI / Py4J or similar
● But if you want to learn Python you can!



Big DL on Spark - Training (custom)
val data = // Data prep goes here. How long could that take?

val Array(trng, chk) = data.randomSplit(Array(split, 1 - split))

Optimizer(

  model = buildModel(classNum), sampleRDD = trng,

  criterion = new ClassNLLCriterion[Float](), batchSize = batch

).setOptimMethod(method)

 .setValidation(Trigger.everyEpoch, valRDD, Array(new 

Top1Accuracy[Float]), param.batchSize)

  .setEndWhen(Trigger.maxEpoch(1))

  .optimize()

Tomomi



Big DL on Spark - Prediction (ML pipeline based)
val model = loadModel(param)

val valTrans = new DLClassifierModel(model, Array(3, imageSize, 

imageSize))

  .setBatchSize(param.batchSize)

  .setFeaturesCol("features")

  .setPredictionCol("predict")

valTrans.transform(data)



DL4J - Hey this looks kind of similar….
JavaRDD<Dataset> = // Data prep goes here.

TrainingMaster trainingMaster = new ParameterAveragingTrainingMaster.Builder(1)

        // Optional config options go here.

        .build();

//Create the SparkDl4jMultiLayer instance

SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, networkConfig, 

trainingMaster);

//Fit the network using the training data:

sparkNetwork.fit(trainingData);

ponafotkas



DL4J - Pipelines?

K.G.Hawes

greyloch



TensorFlow - So many options, most not* fun in JVM
● TensorFlow Scala - Works in Scala not a lot of distributed support
● TensorFlowOnSpark - Works in Spark but assumes Python
● Regular TensorFlowJava - not guaranteed to be API stable, no Spark magic
● Hops Tensorflow (python only)
● TensorFrames - Experimental only, JVM support-ish (can’t define new graphs 

in JVM but can load Python graphs)
● Horovod (python only for now)

https://github.com/yahoo/TensorFlowOnSpark
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/java/README.md
https://github.com/hopshadoop/hops-tensorflow
https://github.com/databricks/tensorframes
https://github.com/uber/horovod


Ok but I want pipelines, they sound cool*
● Spark-deep-learning seems to be the primary package for exposing 

distributed DL libs in a Spark pipeline like interface
● It’s Python only, buuuuut well the next slide might give you some ideas about 

how you can join me** in the adventures to fix this.

Kainoa

https://github.com/databricks/spark-deep-learning


What about the next new shiny tool?
● Probably going to be built with Python APIs
● Spark has an ML pipeline API we can implement
● With a bit of work we can expose arbitrary* Python stages into Scala & Java 

Spark
● See sparklingml for examples (currently basic spacy)

https://github.com/sparklingpandas/sparklingml


Exposing a Spark Python into the JVM:*
def func(cls, *args):

    lang = args[0]

    def inner(inputString):

        """Tokenize the inputString using spacy for

        the provided language."""

        nlp = SpacyMagic.get(lang)

        return list(map(lambda x: x.text, 

list(nlp(inputString))))

    return inner

*See sparklingml repo for the questionable magic that wires this together. 

Cat by moonwhiskers



Using it in the JVM*:
val transformer = new SpacyTokenizePython()

transformer.setLang("en")

val input = spark.createDataset(

  List(InputData("hi boo"), InputData("boo")))

transformer.setInputCol("input")

transformer.setOutputCol("output")

*See sparklingml repo for the questionable magic that wires this together. 

Marie



Ok so I raised some money buuuut...
● It’s kind of slow :(
● You enjoy copying your data around right?
● Why does it take so long to predict?
● Now my investors/interns/engineers want to use [X] deep learning library

Andrew Mager



PySpark - Everything old is new again
● The Python interface to Spark
● The very fun basis to integrate with many deep learning libraries
● Same general technique used as the bases for the C#, R, Julia, etc. 

interfaces to Spark
● Fairly mature, integrates well-ish into the ecosystem, less a Pythonrific API
● Has some serious performance hurdles from the design



A quick detour into PySpark’s internals

+ + JSON 



Spark in Scala, how do we talk to Py libs?

● Py4J + pickling + JSON and magic
○ Py4j in the driver 
○ Pipes to start python process from java exec 
○ cloudPickle to serialize data between JVM and python executors 

(transmitted via sockets) 
○ Json for dataframe schema 

● Data from Spark worker serialized and piped to Python 
worker --> then piped back to jvm
○ Multiple iterator-to-iterator transformations are still pipelined :) 
○ So serialization happens only once per stage

kristin klein



So what does that look like?

Driver

py4j

Worker 1

Worker K

pipe

pipe



So how does this impact DL?

● Double serialization cost makes everything more 
expensive

● Native memory isn’t properly controlled, can over 
container limits if deploying on YARN or similar

● Error messages make ~0 sense
● Spark Features aren’t automatically exposed, but 

exposing them is normally simple



The “future”*: faster interchange
● By future I mean availability starting in the next 3-6 months (with more 

improvements after).
○ Yes much of this code exists, it just isn’t released yet so I’m sure we’ll find all sorts of bugs 

and ways to improve.
○ Relatedly you can help us test in Spark 2.3 when we start the RC process to catch bug early!

● Unifying our cross-language experience
○ And not just “normal” languages, CUDA counts yo

Tambako The Jaguar



Andrew Skudder

*Arrow: likely the future. I really hope so. Spark 2.3 and beyond!

* *



What does the future look like?*

*Source: https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html.

*Vendor 
benchmark.Verify 
before depending 

on.

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html


Arrow (a poorly drawn big data view)

Logos trademarks of their respective projects



Rewriting your friends’ Python code
spark.catalog.registerFunction(

    "add", lambda x, y: x + y, IntegerType())

=>

add = pandas_udf(lambda x, y: x + y, IntegerType())



Why now?
● There’s been better formats/options for a long time
● JVM devs want to use libraries in other languages with lots of data

○ e.g. startup + Deep Learning + ? => profit

● Arrow has solved the chicken-egg problem by building not just the chicken & 
the egg, but also a hen house 

Andrew Mager



BEAM: Beyond the JVM
● Adopting a new architecture for going beyond the JVM, come join us
● tl;dr : uses grpc / protobuf

○ Similar to the common design but with more efficient representations (often)

● But exciting new plans to unify the runners and ease the support of different 
languages (called SDKS)

○ See https://beam.apache.org/contribute/portability/ 

● If this is exciting, you can come join me on making BEAM work in Python3
○ Yes we still don’t have that :(
○ But we're getting closer & you can come join us on BEAM-2874 :D

● No mixed pipeline support right now (would make DL in “Java” easier)

https://beam.apache.org/contribute/portability/
https://issues.apache.org/jira/browse/BEAM-2784


Before I leave: regression is cool

● org.apache.spark.ml.classification
○ BinaryLogisticRegressionClassification, DecissionTreeClassification, 

GBTClassifier, etc.
● org.apache.spark.ml.regression

○ DecissionTreeRegression, GBTRegressor, IsotonicRegression, 
LinearRegression, etc.

● org.apache.spark.ml.recommendation
○ ALS

● You can also check out spark-packages for some more
● But possible not your special AwesomeFooBazinatorML

PROcarterse Follow

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.classification.package
http://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/regression/package.html
http://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/recommendation/package.html
https://spark-packages.org/?q=tags%3A%22Machine%20Learning%22


Lots of data prep stages:

● org.apache.spark.ml.feature
○ ~30 elements from VectorAssembler to Tokenizer, to PCA, etc.

● Often simpler to understand while getting started with 
building our own stages

PROcarterse Follow

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.feature.package


Custom Estimators/Transformers in the Wild

Classification/Regression
xgboost

Deep Learning!
dl4j-spark (deprecated)

Feature Transformation
Lucene transformers

Spacy
spark-nlp

Joannie Dennis



References
● Apache Arrow: https://arrow.apache.org/ 
● Brian (IBM) on initial Spark + Arrow 

https://arrow.apache.org/blog/2017/07/26/spark-arrow/ 
● Li Jin (two sigma) 

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspar
k.html 

● Bill Maimone 
https://blogs.nvidia.com/blog/2017/06/27/gpu-computation-visualization/ 

PROR. Crap Mariner

https://arrow.apache.org/
https://arrow.apache.org/blog/2017/07/26/spark-arrow/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://blogs.nvidia.com/blog/2017/06/27/gpu-computation-visualization/


Learning Spark

Fast Data 
Processing with 
Spark
(Out of Date)

Fast Data 
Processing with 
Spark 
(2nd edition)

Advanced 
Analytics with 
Spark

Spark in Action

High Performance SparkLearning PySpark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.highperformancespark.com


High Performance Spark!

You can buy it today, the O’Reilly folks have it upstairs (& 
so does Amazon).

Only one chapter on non-JVM and nothing on Arrow or 
Deep Learning, I’m sorry. 

Cats love it*
*Or at least the box it comes in. If buying for a cat, get print 
rather than e-book.

https://www.amazon.nl/High-Performance-Spark-Practices-Optimizing-ebook/dp/B0725YT69J/ref=sr_1_1?ie=UTF8&qid=1517738932&sr=8-1&keywords=high+performance+spark


Spark Videos

● Apache Spark Youtube Channel
● My Spark videos on YouTube -

○ http://bit.ly/holdenSparkVideos 
● Spark Summit 2014 training
● Paco’s Introduction to Apache Spark

https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
https://spark-summit.org/2014/training
http://bit.ly/intro-to-apache-spark-paco-video


And some upcoming talks:

● Strata San Jose
● Strata London
● Kafka Summit London
● QCon Brasil
● QCon AI SF
● Know of interesting conferences/webinar things that 

should be on my radar? Let me know!



k thnx bye :)

If you care about Spark testing and 
don’t hate surveys: 
http://bit.ly/holdenTestingSpark 

I need to give a testing talk next 
month, help a “friend” out.

Will tweet results 
“eventually” @holdenkarau

Do you want more realistic 
benchmarks? Share your UDFs!
http://bit.ly/pySparkUDF 

Pssst: Have feedback on the presentation? Give me a 
shout (holden@pigscanfly.ca) if you feel comfortable doing 
so :)

Give feedback on this presentation 
http://bit.ly/holdenTalkFeedback 

http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca
http://bit.ly/holdenTalkFeedback


Bonus Slides

Maybe you ask a question and we go here :)



Installing the Python dependencies?

● Your machines probably already have python
● But they might not have “special_business_logic”

○ Very special business logic, no one wants change fortran code*.
● Option 1: Talk to your vendor**
● Option 2: Try some open source software
● Option 3: Containers containers containers***
● We’re going to focus on option 2!

*Because it’s perfect, it is fortran after all.

** I don’t like this option because the vendor I work for doesn’t have an answer.

*** Great for your resume!



coffee_boat to the rescue*
# You can tell it's alpha cause were installing from github

!pip install --upgrade 

git+https://github.com/nteract/coffee_boat.git

# Use the coffee boat

from coffee_boat import Captain

captain = Captain(accept_conda_license=True)

captain.add_pip_packages("pyarrow", "edtf")

captain.launch_ship()

sc = SparkContext(master="yarn")

# You can now use pyarrow & edtf

captain.add_pip_packages("yourmagic")

# You can now use yourmagic in transformations!



What’s still going to hurt?
● Per-record streaming

○ Arrow is probably less awesome for serialization
○ But it’s still better than we had before

● Debugging is just going to get worse
● Custom data formats

○ Time to bust out the C++ code and a bottle of scotch / matte as appropriate
○ Or just accept the “legacy” performance

bryanbug



We can do that w/Kafka streams..

● Why bother learning from our mistakes?
● Or more seriously, the mistakes weren’t that bad...



Our “special” business logic
def transform(input):

    """

    Transforms the supplied input.

    """

    return str(len(input))

Pargon



Let’s pretend all the world is a string:
 override def transform(value: String): String = {

    // WARNING: This may summon cuthuluhu

    dataOut.writeInt(value.getBytes.size)

    dataOut.write(value.getBytes)

    dataOut.flush()

    val resultSize = dataIn.readInt()

    val result = new Array[Byte](resultSize)

    dataIn.readFully(result)

    // Assume UTF8, what could go wrong? :p

    new String(result)

  }
From https://github.com/holdenk/kafka-streams-python-cthulhu 

https://github.com/holdenk/kafka-streams-python-cthulhu


Then make an instance to use it...
val testFuncFile =

  "kafka_streams_python_cthulhu/strlen.py"

stream.transformValues(

    PythonStringValueTransformerSupplier(testFuncFile))

// Or we could wrap this in the bridge but thats effort.

From https://github.com/holdenk/kafka-streams-python-cthulhu 

https://github.com/holdenk/kafka-streams-python-cthulhu


Let’s pretend all the world is a string:
def main(socket):

    while (True):

        input_length = _read_int(socket)

        data = socket.read(input_length)

        result = transform(data)

        resultBytes = result.encode()

        _write_int(len(resultBytes), socket)

        socket.write(resultBytes)

        socket.flush()

From https://github.com/holdenk/kafka-streams-python-cthulhu 

https://github.com/holdenk/kafka-streams-python-cthulhu


What does that let us do?

● You can add a map stage with your data scientists 
Python code in the middle

● You’re limited to strings*
● Still missing the “driver side” integration (e.g. the 

interface requires someone to make a Scala class at 
some point)

● Probably not any good for deep learning (you likely want 
bytes)


