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I’m not proposing anything heroic.
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CRIU

● What is it?
● Checkpoint Restore In User Space

● Linux utility which copies entire process state into fles.
● Files can be quickly restored on multiple different hosts.
● Handles open fles/sockets/almost all the gory details.

● https://criu.org/Main_Page
● Adrian Reber

https://criu.org/Main_Page


 

CRIU Use Cases

● Process Migration
● Quick Process spin up
● Container Migration



 

Inspiration:  Lisp Machines

● Save World Command:
● Save World (Complete or Incremental) pathname
● Saves the current world. The system prompts for (Complete or Incremental) 

if Incremental Disk Save is enabled. Specify Complete to save the entire 
world, or Incremental(if enabled) to perform an Incremental Disk Save. The 
default is Complete.



 

Some Java specifc things we can do.



 

Fully Compact Heap and Release 
Unused Memory

2GB dense heap64GB sparse heap
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Hot Swap GC algorithms
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Optimize Heap Layout

● Inspired by Remix: Online Detection and Repair of Cache Contention For 
the JVM  Eizenberg, Hu, Pokam, and Devietti

● Monitor Hardware performance counters to detect things like false 
cache line sharing and then pad the data layout.

Cache Line

Value A Value B
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Specify Where Checkpointing 
Occurs

● Places where there’s a small reasonable consistent state



 

Enough Motivation

How about an API?



 

Proposed Strawman API for Java
● Class World {

● bool Check()
●    Runs criu check to ensure the proper kernel patches are there.
●    Runs check of JVM internal data structures to ensure they are all migratable.
● bool Save()
●    Runs criu dump.  Does not implicitly include OptimizeTheWorld in case users 

want an exact duplicate.
● bool SaveIncremental()
●    Saves only those memory pages that have changed since the last dump.
● bool SaveWithEpsilonGC()

● GC Twice. Get rid of internal GC data structures (card table).  Remove 
Barriers.  Fire Up Epsilon GC.

● ...
●



 

Proposed Strawman API for Java
● Optimize()
●    Runs Two Back to Back Full GCS to remove all foating garbage.
●    Optimize Memory Layout
● Restore()
● Migrate(...)

● Copies the running process to another host.
● AddCheckpointHook(…)
● AddRestoreHook(…)

● }



 

Current Status

Prototype:

● Uses JNI
● Implements CheckTheWorld
● SaveTheWorld
● Command line RestoreTheWorld.



 

Showing CRIU Works on Java
● setsid java TestRandom 10000 100000000000 < /dev/null &> test.log &
● ps -aux | grep java
● 13874  …  java TestRandom 10000 100000000000
● sudo criu dump -t 13874 -o dump.log
● ps -aux | grep java
● ...
● sudo criu restore -d -vvv -o restore.log && echo ok
●  ps -aux | grep java
● chf      13874 ... java TestRandom 10000 100000000000



 

Can restore multiple instances.
● sudo criu dump -t 13471 -o dump0a.log
● sudo criu restore -o restore0a.log
● <wait>
● sudo criu restore -o restore0a1.log



 

Prototype calling from Java

CheckpointRestore.CheckTheWorld();
CheckpointRestore.SaveTheWorld("/home/cfood/Velma");
long start = System.currentTimeMillis();

for (int step = 0; step < steps/2; step++) {
    doStep(MEG);
}

long end = System.currentTimeMillis();
System.out.println("Saving the world in directory /tmp/Saved" + end);
CheckpointRestore.SaveTheWorld("/tmp/Saved" + end);

long ms = ((end - start)) + 1;
checkTrees();
System.out.println("End Shaggy");

●

Think of this
like a Fork



 

Java Process
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Java Process mirrored in /proc
Java Startup Thread

GC Threads
Compiler
Thread Java Threads

/proc/<java_pid>
/proc/<java_pid>/tasks/<gc_pid1>
/proc/<java_pid>/tasks/<gc_pid2>
/proc/<java_pid>/tasks/<gc_pid3>
/proc/<java_pid>/tasks/<gc_pid4>
/proc/<java_pid>/tasks/<compiler_pid1>
/proc/<java_pid>/tasks/<java_child_pid1>



 

Simplifed Java Process
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CRIU process 
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Parasite Code
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Parasite code copies Virtual Memory 
specifed in /proc/<java_pid>smaps 

4KB 0x400000 - 0x401000

4KB 0x600000 - 0x601000

2GB 0x80000000-0x100080000 

CRIU
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Parasite code copies Mapped Files 
from /proc/<java_pid>map_fles

CRIU
Process

File System
Copies

• 7ffff7dd6000-7ffff7dd7000 -> 
• /usr/lib64/libpthread-2.17.so



 

And So On

● File Descriptor Numbers from /proc/java_pid/fd
● Core Parameters from /proc/java_pid/stat 



 

CRIU
Process

File System

Accesses
Registers 
and Stack

Stopped JVM

PTRACE_PEEKUSER



 

Parasite Code
● Parasite Code reads

● Reads Credentials
● Reads Contents of Memory
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Resolve Shared Resources
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Fork The Process Tree
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Restore Basic Resources
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Gotchas

● Cached data must be dealt with.  
● Number of processors. 
● Size of Heap
● Certifcates

● Open Files must be present on restore host .
● Processes must have the same pids on checkpoint and restore 

● pid manager?



 

Contact Info

● chf@redhat.com
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