
Checkpoint Restore
Fast Start-up For Java Applications

Christine H. Flood

Checkpoint

JVM with
Classes Loaded
Warmed Up JIT

Fully Compacted Heap

Checkpoint
File System

Not Object
Serialization

Restore

JVM
Image
Files

Hot JVM

Hot JVM

Hot JVM

Hot JVM

Restore

Another Use Case

Long Running
Number Crunching

Application

File
System

Checkpoint
Every
iteration

Ruh Roh Raggy

Long Running
Number Crunching

Application

File
SystemCRASH

Restore

Restarted
Long Running

Number Crunching
Application

File
System

Restore

Two More Use Cases

Time sensitive program
where you want heap

dumps.

Buggy program that
takes hours to reach

error condition.

Two More Use Cases

Time sensitive program
where you want heap

dumps.

Buggy program that
takes hours to reach

error condition.

I’m not proposing anything heroic.

CRIU already does the heavy lifting

Linux
Process

File
System

Checkpoint

Restore

CRIU

● What is it?
● Checkpoint Restore In User Space

● Linux utility which copies entire process state into fles.
● Files can be quickly restored on multiple different hosts.
● Handles open fles/sockets/almost all the gory details.

● https://criu.org/Main_Page
● Adrian Reber

https://criu.org/Main_Page

CRIU Use Cases

● Process Migration
● Quick Process spin up
● Container Migration

Inspiration: Lisp Machines

● Save World Command:
● Save World (Complete or Incremental) pathname
● Saves the current world. The system prompts for (Complete or Incremental)

if Incremental Disk Save is enabled. Specify Complete to save the entire
world, or Incremental(if enabled) to perform an Incremental Disk Save. The
default is Complete.

Some Java specifc things we can do.

Fully Compact Heap and Release
Unused Memory

2GB dense heap64GB sparse heap

2GB heap with
memory given
back to the OS.

Hot Swap GC algorithms

Java
Process
running

ParallelGC

Java
Process
running

EpsilonGC

Freed space for
GC data structures

Optimize Heap Layout

● Inspired by Remix: Online Detection and Repair of Cache Contention For
the JVM Eizenberg, Hu, Pokam, and Devietti

● Monitor Hardware performance counters to detect things like false
cache line sharing and then pad the data layout.

Cache Line

Value A Value B

Provide Hooks to the Java
Programmer

JVM with cached
certificate

File System

Checkpoint
hooks to clear

certificate

Provide Hooks to the Java
Programmer

Restored JVM

File System
Restore
hook to
re-establish
certificate

Fix Things Like Number of
Processors

JVM with thread pool with 8
workstealing threads

File System

Fix Things Like Number of
Processors

Restored
JVM with 2

workstealing
threads

File System

Specify Where Checkpointing
Occurs

● Places where there’s a small reasonable consistent state

Enough Motivation

How about an API?

Proposed Strawman API for Java
● Class World {

● bool Check()
● Runs criu check to ensure the proper kernel patches are there.
● Runs check of JVM internal data structures to ensure they are all migratable.
● bool Save()
● Runs criu dump. Does not implicitly include OptimizeTheWorld in case users

want an exact duplicate.
● bool SaveIncremental()
● Saves only those memory pages that have changed since the last dump.
● bool SaveWithEpsilonGC()

● GC Twice. Get rid of internal GC data structures (card table). Remove
Barriers. Fire Up Epsilon GC.

● ...
●

Proposed Strawman API for Java
● Optimize()
● Runs Two Back to Back Full GCS to remove all foating garbage.
● Optimize Memory Layout
● Restore()
● Migrate(...)

● Copies the running process to another host.
● AddCheckpointHook(…)
● AddRestoreHook(…)

● }

Current Status

Prototype:

● Uses JNI
● Implements CheckTheWorld
● SaveTheWorld
● Command line RestoreTheWorld.

Showing CRIU Works on Java
● setsid java TestRandom 10000 100000000000 < /dev/null &> test.log &
● ps -aux | grep java
● 13874 … java TestRandom 10000 100000000000
● sudo criu dump -t 13874 -o dump.log
● ps -aux | grep java
● ...
● sudo criu restore -d -vvv -o restore.log && echo ok
● ps -aux | grep java
● chf 13874 ... java TestRandom 10000 100000000000

Can restore multiple instances.
● sudo criu dump -t 13471 -o dump0a.log
● sudo criu restore -o restore0a.log
● <wait>
● sudo criu restore -o restore0a1.log

Prototype calling from Java

CheckpointRestore.CheckTheWorld();
CheckpointRestore.SaveTheWorld("/home/cfood/Velma");
long start = System.currentTimeMillis();

for (int step = 0; step < steps/2; step++) {
 doStep(MEG);
}

long end = System.currentTimeMillis();
System.out.println("Saving the world in directory /tmp/Saved" + end);
CheckpointRestore.SaveTheWorld("/tmp/Saved" + end);

long ms = ((end - start)) + 1;
checkTrees();
System.out.println("End Shaggy");

●

Think of this
like a Fork

Java Process

Java Startup Thread

GC Threads
Compiler
Thread Java Threads

Java Process mirrored in /proc
Java Startup Thread

GC Threads
Compiler
Thread Java Threads

/proc/<java_pid>
/proc/<java_pid>/tasks/<gc_pid1>
/proc/<java_pid>/tasks/<gc_pid2>
/proc/<java_pid>/tasks/<gc_pid3>
/proc/<java_pid>/tasks/<gc_pid4>
/proc/<java_pid>/tasks/<compiler_pid1>
/proc/<java_pid>/tasks/<java_child_pid1>

Simplifed Java Process

Java
Process

CRIU process

CRIU
Process

PTRACE_SEIZE

Java
Process

Parasite Code

CRIU
Process

Java
Process

Parasite Code
Injects via
PTRACE

Parasite code copies Virtual Memory
specifed in /proc/<java_pid>smaps

4KB 0x400000 - 0x401000

4KB 0x600000 - 0x601000

2GB 0x80000000-0x100080000

CRIU
Process

File System
Copies

Parasite code copies Mapped Files
from /proc/<java_pid>map_fles

CRIU
Process

File System
Copies

• 7ffff7dd6000-7ffff7dd7000 ->
• /usr/lib64/libpthread-2.17.so

And So On

● File Descriptor Numbers from /proc/java_pid/fd
● Core Parameters from /proc/java_pid/stat

CRIU
Process

File System

Accesses
Registers
and Stack

Stopped JVM

PTRACE_PEEKUSER

Parasite Code
● Parasite Code reads

● Reads Credentials
● Reads Contents of Memory

Cleanup

CRIU
Process

Java
Process

Parasite Code
Uses PTRACE

to clean up
Parasite Code

And restore
original code

Cleanup

CRIU
Process

Java
Process

Detach

Restore

CRIU
Process Java

Process

Morphs Into

Resolve Shared Resources

CRIU
Process

Image Files

Figures out
Shared

Resources

Fork The Process Tree

CRIU
Process Recreate Processes

with the same
PIDs

Restore Basic Resources

CRIU
Process

Memory Mappings
Timers

Credentials
Threads

Restorer
Blob

Java
Process

Gotchas

● Cached data must be dealt with.
● Number of processors.
● Size of Heap
● Certifcates

● Open Files must be present on restore host .
● Processes must have the same pids on checkpoint and restore

● pid manager?

Contact Info

● chf@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

