Byte code field report

or

Why we still heavily rely on
Unsafe even in Java 13

What background do | base this talk/opinion based on?

ch.k,itQ@ L

INSTANA

¥ HIBERNATE

In what areas are instrumentation and dynamic subclassing mainly used?

behaviour changing behavior enhancing

dynamic subclass

retransformation

How to define and change byte code at runtime?

interface Instrumentation { // since Java 5
vold addClassFileTransformer (ClassFileTransformer cft);

class Unsafe { // since Java 11

Ll aceD> dof noClaoss itrine mame - T1 bote - L ———}—
}

class MethodHandle { // since Java 9
Class<?> defineClass(byte[] bytes) { ... }

package jdk.internal;
class Unsafe { // since Java 9
Class<?> defineClass(String name, byte[] bytes, ...) { ... }

Defining classes from Java agents

—Transtorming-classesfromJava-agents—

Defining classes from libraries
Transforming classes from libraries

Miscellaneous

Java agents also need to define classes.

class Sample {
void method () {

class Api {
static void invoke(Callback c) { ... }

APl enhancement proposal: JDK-8200559

interface ClassFileTransformer {

interface ClassDefiner {
Class<?> defineClass(byte[] bytes);

byte[] transform(
ClassDefiner classDefiner, // restricted to package of transformed class
Module module,
ClassLoader loader,
String className,
Class<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte[] classfileBuffer
) throws IllegalClassFormatException;

Injected classes with multiple use sites.

class Sender {
void send(Receiver receiver) {

- Framework.sendAsync(receiver, new EwggedByent());
}
)

class Receiver {
void receive (Event event) {

System.out.println (event);

Why JDK-8200559 does not cover all use cases.

e AlJava agent cannot rely on a given class loading order.
 The TaggedEvent class must be defined in the package of the first class being loaded.

class sender.Sender class receiver.Receiver
class sender.TaggedEvent class receiver.TaggedEvent
class receiver.Receiver class sender.Sender

 The mediator class might need to be defined in a different package to begin with.

package event;
public class Event {
/* package-private */ void overridable() {
// default behavior

Emulating Unsafe.defineClass via JDK-8200559.

static void defineClass(Instrumentation inst, Class<?> pgkWitness, byte[] bytes) {

ClassFileTransformer t =

(definer, module, loader, name, c, pd, buffer) -> {
if (c == pgkWitness) {

definer.defineClass (bytes) ;

}
return null;

};

instrumentation.addClassFileTransformer (t, true);

try {
instrumentation.retransformClasses (pgkWitness) ;

} finally {
instrumentation.removeClassFileTransformer (t) ;

Bonus: Hijacking the internal method handle to define classes in foreign packages.

class Lookup {

static final Lookup IMPL LOOKUP = new Lookup(Object.class, TRUSTED) ;

static final Lookup PUBLIC LOOKUP = new Lookup(Object.class, PUBLIC | UNCOND) ;
}

inst.retransformClasses (MethodHandles.class);

class MethodHandles {
public static Lookup publicLookup() {
if (Thread.currentThread() .getId() == MY PRIVILEGED THREAD) ({
return Lookup.IMPL_LOOKUP;
} else {
return Lookup.PUBLIC LOOKUP;

}

800

700

600

500

400

300

200

100

W sun.misc.Unsafe

milliseconds

M java.lang.invoke.MethodHandle

W using package witness

Defining classes from Java agents

—Transtorming-classesfromJava-agents—

Defining classes from libraries
Transforming classes from libraries

Miscellaneous

Using unsafe class definition in testing context.

UserClass userClass = Mockito.mock(UserClass.class);

user.jar mockito.jar

user module ' (unnamed) module

byte[] userClassMock = ...
srethodHandle—detfinectasasfaserctarsasMerci)—

No standardized support for "test dependencies”. It is impossible to open modules to Mockito which only exists in tests.

How to use Unsafe with the jdk.unsupported module being unrolled?

Field f = sun.misc.Unsafe.class.getDeclaredField("theUnsafe™);
f.setAccessible (true) ;
Unsafe u = (Unsafe) f.get(null);

—defipeloccstl—F ¥ ——

Field f = jdk.internal.misc.Unsafe.class.getDeclaredField("theUnsafe");

——etiecessdteftErue)+ // only possible from agent (redefineModules) or cmd
Unsafe u = (Unsafe) f.get(null);

f.defineClass(...);

static void makeAcce551ble(Unsafe unsafe, Field target) {
Field f = Aéd C Eas =
long offset = unsafe. getObjectFleldOffset(f)
u.putBoolean(target, offset, true);

d (" siacel daVh; 12

45

40

35

30

25

20

15

10

(S,]

milliseconds

mdirect mclass file copy

Handling proxies in a modularized application
interface MockitoMock

class UserClass

user.jar mockito.jar

user module ‘ (unnamed) module

—exportiread—

class ModuleProbe {

. UnsafeHelper.defineClass(...);
static { UserClass.class.getModule()

.addReads (MockitoMock.class Class.forName (
.getModule()); } _ ModuleProbe.class.getName (),
} true, cl);

class UserClassS$SMockitoMock
extends UserClass _ UnsafeHelper.defineClass(...);
implements MockitoMock

Handling proxies in a modularized application

class UserClass i E interface MockitoMock

user.jar

user module (unnamed) module
class loader A class loader B

, , mock class loader
class MockitoBridge {

static Module module; .
UnsafeHelper.defineClass(...);
} —

class ModuleProbe ({ MockitoBridge.module = mcl

static { UserClass.class.getModule() -getUnnamedModule () ;

.addReads (MockitoBridge.class
.getModule()) ;
UserClass.class.getModule () _

.addExports (MockitoBridge.module) ;

UnsafeHelper.defineClass(...);

Class.forName (
ModuleProbe.class.getName (),
true, cl);

140

120

100

80

60

40

20

m regular

milliseconds

m direct probe

m bridged probe

Defining classes from Java agents

—Transtorming-classesfromJava-agents—

Defining classes from libraries
Transforming classes from libraries

Miscellaneous

Instrumenting code without attaching a Java agent.

FinalUserClass finalUserClass = Mockito.mock(FinalUserClass.class);

class InstrumentationHolder {
static Instrumentation inst;
public static void agentmain(String arg, Instrumentation inst) {
InstrumentationHolder.inst = inst;

}

static Instrumentation inst () {
long processlId = ProcessHandle.current () .pid();
BirtnglMachinenvm En¥ErtemedHethenrtodderehlStrd . S
vm.loadAgent (InstrumentationHolder.class.getProtectionDomain (),
.getCodeSource ()

.getURL()
.toString (), "");
returhudhMachmastasmisndaotdealMashine.attach (String.valueOf (processId)) ;

} vm.loadAgent (location, "");

Cogpliskbwthe i atiashAllowAHasSel opfigp which is false by default
}

3000

2500

2000

1500

1000

500

B command line

milliseconds

m self-attachment

m indirect self-attachment

Using self-attach for emulating Unsafe.allocatelnstance in Mockito.

UserClass userClass = Mockito.mock(UserClass.class);

class UserClass {
UserClass() { // some side effect }
} if ('MockitoThreadLocalControl.isMockInstantiation()) {
// some side effect

Dealing with the security manager in unit tests and agents.

class AccessControlContext {
vold checkPermission(Permission perm) throws AccessControlException {
decunetigManagerIngerusptorcuheck (thisgeperm) ;

Not all security managers respect a policy file what makes instrumentation even more attractive.

What is missing for a full migration away from Unsafe?

interface Instrumentation {

Class<?> defineClass(byte[] bytes, ClassLoader cl);
//

class TestSupport { // module jdk.test

static Instrumentation getInstrumentation() { ... }
static <T> T allocatelInstance(Class<T> type) { ... }
static void setSecurityManagerUnsafe (SecurityManager sm) {

The jdk.test module would:

not be bundled with a non-JDK VM distribution
it would print a console warning when being loaded

allow to mark test-scope libraries not to load in production environments
be resolved automatically by test runners like Maven Surefire

}

Defining classes from Java agents

—Transtorming-classesfromJava-agents—

Defining classes from libraries
Transforming classes from libraries

Miscellaneous

How do agents inject state into classes without changing their shape?

Callback callback = -
Dispatcher.vals.put ("unigue-name", callback);

ClassFileTransformer t = (definer, module, loader, name, c, pd, buffer) -> {
// how to make the callback instance accessible to an instrumented method?

volid foo () {

} Callback ¢ = (Callback) Dispatcher.vals.get ("unique-name");
c.invoked("foo") ;

class Dispatcher { // inject into a well-known class loader
ConcurrentMap<String, Object> vals = new ConcurrentHashMap<>() ;

How do agents inject state into classes without changing their shape?

State state = ...;

Init.vals.put("unigue-name", state);

ClassFileTransformer t = (definer, module, loader, name, c, pd, buffer) -> {
// how to inject non-serializable state into an instrumented class?

}

class UserClass {
static final State state;
} static {
state = (State) Init.vals.get("unigue-name");

class Init { // inject into a well-know class loader
static ConcurrentMap<String, Object> vals = new ConcurrentHashMap<>() ;

Working with "well-known" class loaders.

Well-known (across all Java versions): system class loader, boot loader

interface Instrumentation {
void appendToBootstrapClassLoaderSearch(JarFile jar);
void appendToSystemClassLoaderSearch(JarFile jar);

Change in behavior:
* Java 8 and before: URLClassLoader checks appended search path for any package.
e Java 9 and later: BuiltInClassLoader checks appended search path for unknown packages.

Working with "well-known" modules.

interface Instrumentation {
vold redefineModule (

Module module,
Set<Module> extraReads,
Map<String, Set<Module>> extraExports,
Map<String, Set<Module>> extraOpens,
Set<Class<?>> extraUses,
Map<Class<?>,List<Class<?>>> extraProvides

) ;

Not respected by other module systems (OSGi/JBoss modules) which are harder to adjust.

Solutions:
* Adjust module graph via instrumentation + instrument all class loaders to whitelist agent dispatcher package.

* Put dispatcher code into a known package that all class loaders and the VM accept: java.lang@java.base.

The latter is only possible via Unsafe API since Java 9 and later.

mailto:java.lang@java.base

Most dynamic code generation is not really dynamic.

Dynamic code generation is
 mainly used because types are not known at library-compile-time despite being known at application compile-time.

* should be avoided for production apllications (reduce start-up time) but is very useful for testing.

dSupportedSourceVersion (SourceVersion.latestSupported())
@SupportedAnnotationTypes ("my.SampleAnnotation)
public class MyProcessor extends AbstractProcessor {

vold init(ProcessingEnvironment env) { }
boolean process (Set<? extends TypeElement> annoations, RoundEnvironment env) { }

}

Downside of using annotation processors:

* Bound to the Java programming language.

e Cannot change bytecode. (Only via internal API as for example in Lombock.)
* No general code-interception mechanism as for Java agents.

How to write a "hybrid agent" using build tools.

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-maven-plugin</artifactId>
<version>LATEST</version>

</dependency>

Unified concept in Byte Buddy: agents, plugins and subclass proxies:

interface Plugin { interface Transformer ({
DynamicType.Builder<?> apply (DynamicType.Builder<?> transform(
DynamicType.Builder<?> builder, DynamicType.Builder<?> builder,
TypeDescription typeDescription, TypeDescription typeDescription,
ClassFilelLocator classFileLocator); ClassLoader classLoader,
} JavaModule module) ;
}

Remaining downside of build plugins:
Difficult to instrument code in the JVM and third-party jar files.
An agent-like compile-time transformation API would be a great edition to AOT-based Java, e.g. Graal.

Memory-leaks caused by hybrid agents: lack of ephomerons

class UserClass {
void m() { /* do something */ }

/ static

class UserClass {
AgentDispatcher dispatcher;
void m() {

}

dispatcher.handle("m",

this) ;

dynamic\

public class BootDispatcher ({
public static WeakMap<Object, Dispatcher>

dispatchers; '

}
class UserClass { hard reference
void m() {
BootDispatcher.dispatchers
.get (this)

.handle ("m", this);

http://rafael.codes
@rafaelcodes

http://documents4j.com

S=
https://github.com/documents4j/documents4j document54'

J

http://bytebuddy.net
https://github.com/raphw/byte-buddy

