
©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

Where Do Libraries

Come From?

©2019 Azul Systems, Inc.

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

Where Do Libraries

Come From?

Mommy,

©2019 Azul Systems, Inc.

About me: Gil Tene

co-founder, CTO
@Azul Systems

Have been working on
“think different” GC
approaches since 2002

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise apps,
etc...

I also depress people by
pulling the wool up from
over their eyes…

* working on real-world trash compaction issues, circa 2004

©2019 Azul Systems, Inc.

Libraries

code that other people use

©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

©2017 Azul Systems, Inc.

Libraries

How do they come to be?

Do you want to build one?

Should you build one? Is it a good idea?

When does it become a good idea?

Even when it’s a good idea, will it “make it”?

What it looks like on the way to adoption

What life looks like once its adopted

Some rules only library writers have to live with

©2019 Azul Systems, Inc.

Libraries

How do they come to be?

©2017 Azul Systems, Inc.

Libraries

How do they come to be?

(IMO) It never starts with “I want to build a library”

It usually starts with you doing something

And then doing that same thing again

And again

And then you separate that “thing” out to reuse it

For yourself

For your group

For you project

©2017 Azul Systems, Inc.

Libraries

How do they come to be?

…

For your company…

When it leaves the “project” it starts being a library

Something separate, uncoordinated, is actually using it

Thats when the “fun” starts

Usually there is a “rationalization” step

When you realize it is being used as a library

Things get re-stated in more generic terms

©2017 Azul Systems, Inc.

Example: HdrHistogram

HdrHistogram is… a histogram

How much can you write about a histogram?

It turns out: a lot

Initial “Library” implementation written in Java

With language implementations in C, C#, Javascript,
Python, Rust, Go, Erlang, Haskel, …

Used by SpringBoot, Hystrix, Elasticsearch, Log4j2, Storm,
Gatling, Akka, Cassandra, Aeron, …, …

So what is it?

©2017 Azul Systems, Inc.

Example: HdrHistogram

what is it?

Histograms count things in buckets

Thats simple, seemingly

Which buckets? What sizes? how many?

Common, simple, in-line implementations:

Linear buckets e.g. [0-99][100-199][200-299]…

Need 3.6B buckets to cover 1 usec to 1 hour

Logarithmic e.g. [0-1][2-3][4-7][8-15][16-31][31-64]…

Only need ~32 to cover 1usec to 1 hour

But can’t tell the difference between 2 seconds and 3.9 seconds

©2017 Azul Systems, Inc.

HdrHistogram

what is it?

©2017 Azul Systems, Inc.

HdrHistogram

what is it?

Example: track values from 1 nanosecond to 1 hour

With a precision of 3 decimal points

Histogram = new Histogram(3600000000000L, 3);

Above (example) maintain 3 decimal point precision

1 usec resolution up to 1 millisecond

1 millesecond resolution up to 1 second

1 second resolution up to 1000 seconds

no worse than +/- 3.6 seconds up to 1 hour

©2017 Azul Systems, Inc.

HdrHistogram

what is it?

It is FAST (>200M recording per second on a laptop)

usually faster than measuring time

It is zero-allocation

It has a wire format

compact, and works across languages

It has convenience things

Recorder, interval histograms, log writer, viewers

DoubleHistogram h = new DoubleHistogram(3);

©2017 Azul Systems, Inc.

HdrHistogram: How did it come to be?

It started as an inner class in a “JitterMeter”

Needed a way to deal with logging and reporting latencies
across a wide range. ~100 LOC.

I kept copying it out to other tools

So I made a class out of it

Then I showed it to a friend

Next thing I know:

I’m running a Yak-shaving co-op on github

The first Yak hair I produced was Java-colored Himalayan
but others have since added other colors and breeds

©2019 Azul Systems, Inc.

hdrhistogram.org

http://hdrhistogram.org

©2019 Azul Systems, Inc.

First commit: Sep. 11, 2012

©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

Libraries

do you want to build one?

©2017 Azul Systems, Inc.

Libraries

do you want to build one?

Well…

What do you like to do with your weekends?

If you don’t get paid to do this…

If it could be part of your job

Do you want it to be part of your job?

If so, prepare for some realities…

For example, are you willing to code to Java 7?

©2019 Azul Systems, Inc.

Libraries

Is it a good idea?

©2017 Azul Systems, Inc.

Libraries

Is it a good idea?

IDK

What makes it “needed”

Is it just that you don’t like the 7 other libraries that
do the same thing you are about to build?

Or is it something that is missing

Best positive-indication symptom IMO:

Other people (choose to) copy your code

Still, will it make it?

©2019 Azul Systems, Inc.

Libraries

Will it “make it”?

©2017 Azul Systems, Inc.

Libraries

Will it “make it”?

IMO, most libraries die young

For every star and fork on github, there are probably 2 dead
libraries that never got adopted

And that’s OK. It is as it should be.

Don’t get discouraged

Don’t get your hopes up

Do a good job

Think of what adopters will expect and need

Think of rules to follow, and start early

©2019 Azul Systems, Inc.

Libraries

rules that only library writer have to follow

©2017 Azul Systems, Inc.

Libraries

rules that only library writer have to follow

Examples only…

API compatibility

Including binary compatibility

e.g. a default interface method can be “interesting"

Plan to start by coding to the “the mainstream”
production language versions of ~3 years ago

If someone starts using your library today

they will hopefully keep using it in 3, 5, 8 years

So expect coding to Java versions that are ~7-10 years old

©2019 Azul Systems, Inc.

Libraries

Can be hard to get rid of

©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

©2019 Azul Systems, Inc.

©2017 Azul Systems, Inc.

Libraries

Can be hard to get rid of

Issues pop up and people will beg you for stuff

Does it work on Java 11?

What about 12?

Can you keep it working for Java 7 and 11 at the
same time?

What about 8 and 23?

Tricks of the trade

©2018 Azul Systems, Inc.

HdrHistogram

(as an anecdotal example)

Ticket opened on Java implementation: Broke on Java 9

Fixing it broke Java 7….

… … … …

Eventually built helper class to bridge gaps.

Would I have done this if HdrHistogram had any
dependencies?

Probably not…

But lets try to save others some time…

©2018 Azul Systems, Inc.

Problem statement:

Library portability

Library needs a single jar that works on Java 7/8/9/10…

Makes use of APIs that do not exist (in the same form)
in all JDK versions

Multi-version jar (alone) solves nothing

Split-up sources are not maintainable

A “good” fix will encapsulate problem areas

Solve in “ugly” but internal, well-encapsulated way

E.g. reflection, method handles, multi-version-jars, …

©2018 Azul Systems, Inc.

org.HdrHistiogram.Base64Helper

©2018 Azul Systems, Inc.

org.HdrHistiogram.Base64Helper

©2018 Azul Systems, Inc.

org.HdrHistiogram.Base64Helper

©2018 Azul Systems, Inc.

org.HdrHistiogram.Base64Helper: the “ugly”

©2018 Azul Systems, Inc.

I can’t be the only one, right?

And these are probably not the only
two methods…

©2018 Azul Systems, Inc.

Problem statement:

pre-coding for new features

A new capability is anticipated in a coming JDK

We want libraries and projects to pre-code with
new feature in mind

But they need to run on existing JDKs

Solution will tend to encapsulate new functionality

E.g. method handles, or pure-java semantic
equivalent

©2018 Azul Systems, Inc.

Thread.onSpinWait()

©2018 Azul Systems, Inc.

Thread.onSpinWait()

org.agrona.hints.ThreadHints

©2018 Azul Systems, Inc.

org.agrona.hints.ThreadHints

©2018 Azul Systems, Inc.

org.agrona.hints.ThreadHints

©2018 Azul Systems, Inc.

My next Idea for a Library

“Safe”

As in: org.javaportability.Safe

A library that does “Unsafe” things safely on Java 11+

But uses sun.misc.Unsafe under the hood for 8-

