
Protecting your organization
against attacks via the

build system

Louis Jacomet - Gradle Inc.

@ljacomet

Louis Jacomet

Gradle, Inc.

Lead Software Engineer

Dependency Management / JVM Team at Gradle

Supply chain attacks are no longer an hypothesis

A supply-chain attack is an indirect attack which targets the tools, automatic software
updates or supply chain in general, in order to introduce malicious code or dependencies into
existing software, without the developers being aware.

The consequence of those attacks may be catastrophic as they are easily unnoticed and
usually scale out because of the end targets: mobile applications for example.

There’s evidence of such attacks in the wild. Some are suspected to be issued from Nation
State Actors.

CCleaner/Asus

• Hacked into (auto) update systems

• Tool update installed a backdoor (ShadowPad) on machines

• Performed a follow-up attack against high value targets

https://www.wired.com/story/inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/

MS Tools attack

• Initial pattern similar to Asus / CCleaner, pointing to same
attackers

• Microsoft developer tools were maliciously modified
• Game companies used the compromised dev tools to sign

games

• Properly signed games are released with an embedded
backdoor

https://www.wired.com/story/supply-chain-hackers-videogames-asus-ccleaner/#

Homebrew - 30 minutes
from nobody to a commit

• Case study by Eric Holmes in 2018
• Found a leaked GitHub key on CI
• Committed to the main repo

• Profit Responsible disclosure and get the project protected

https://medium.com/@vesirin/how-i-gained-commit-access-to-homebrew-in-30-minutes-2ae314df03ab

23% of all security advisories against JS projects
refer to intentionally malicious packages

Jonathan Leitschuh, analyzing Npmjs advisories

https://www.npmjs.com/advisories?page=0&perPage=1100

“Maintainers of the RubyGems package repository
have yanked 18 malicious versions of 11 Ruby
libraries that contained a backdoor mechanism
and were caught inserting code that launched

hidden cryptocurrency mining operations inside
other people's Ruby projects.

https://www.zdnet.com/article/backdoor-code-found-in-11-ruby-libraries/

“When installing an average npm package, a user
implicitly trusts around 80 other packages due to

transitive dependencies.

https://blog.acolyer.org/2019/09/30/small-world-with-high-risks/

Real world dependency graph (Java)

A confusing dependency

• Android library for audio recording
• Thousands of stars on GitHub
• Available through JitPack

• Version that ends up on the app is different
• Executed code does not match the code on GitHub
• Attempts network calls, sharing phone model information

• Jitpack version was shadowed by another deploy to JCenter

https://blog.autsoft.hu/a-confusing-dependency/

“hackers don't attack individual devices or
networks directly, but rather the companies that

distribute the code used by their targets

https://www.wired.com/story/supply-chain-hackers-videogames-asus-ccleaner/#

https://www.wired.com/story/supply-chain-hackers-videogames-asus-ccleaner/#

Application building: Potential attack vectors

• New code
• CI infrastructure
• Dependencies
• Remote repositories
• Plugins (via plugin portal or Maven Central)
• Gradle/Maven distribution (and wrapper)
• Local file system
• Build cache / external services

New code and CI infrastructure

How to: compromise CI infrastructure

⬢Create a pull request

⬢Automatically build on CI (private
or public farm)

⬢Bitcoin all the things!

Variant: Compromising OSS developer machines
(example)

01 Submit a PR with compromised code (direct code, upgrade a plugin in the
build, introduce a new one, upgrade the wrapper, edit a build script, …)

02 Developer checks out the code locally and runs test

03 Profit!

Never “try out” PRs

• First, look at code, all files
• Don’t try directly on CI

• Or even locally!
• Be particularly picky on “obfuscated”

upgrades (plugin versions, …)

Pull request acceptance

• Use CLAs (reduces the risks)
• Perform light background verification of the author
• Review first and when you think it’s ok

• Check out the code
• Test it

• If on CI, use isolated, disposable build agents

Signing your commits

Git lets anyone use anyone’s identity 
Signing proves your identity

Important for legal too (who contributed what)

Improving CI security

Disposable containers are a good idea for
security, however:

- They are bad for performance (extra
downloads, no Gradle daemon, build
bootstrapping, …)

- A single vulnerability in a container may
be enough to gain access to the host

Mitigating performance issues

Mitigating performance issues

The build cache makes it possible to reuse task outputs
from different build agents.

Needs secure connection between nodes.

Doesn’t deal with dependency downloads

The later can be handled by copying or sharing a
dependency cache (Gradle 6.1 and 6.2)

Dependencies, plugins and repositories

Our Commons: Maven Central / JCenter

Contains millions of artifacts, mostly published as convenience binaries, together with:

⬢ MD5 checksums → unsafe for a while

⬢ SHA1 checksums → really no longer safe
⬢ ASC signatures → not always safe

Checksums

• A checksum guarantees the integrity of the
artifact (if it’s safe…)

• Repository checksums may be compromised
too!

• Use checksums from a different source
(website)

• Publish checksums separately on a
different machine!

• Gradle 6 publishes SHA256 and SHA512

There are broken checksums on Maven Central.
JCenter computes SHA1/MD5 on demand.

Signatures

- A signature guarantees the origin of the
artifact (if private key didn’t leak)

- Commonly uses PGP
- Harder for casual developers to check

But:

- Keys sometimes lost
- Malicious authors can sign too
- ASC files use checksums too!

Verifying dependencies with Gradle

⬢Supported in Gradle core -
Requires Gradle 6.2

⬢Can check plugins in addition to
regular dependencies

⬢Supports checking metadata -
pom.xml, .module, …

⬢Can be checksum or signature
based

⬢Ability to generate first iteration of
the file

Verification in Maven

⬢ Requires an external plugin

⬢ Only cover dependencies, not plugins

⬢ Doesn’t support checking metadata -
pom.xml, .module, ...

Inconsistent repositories

Different repositories may contain different artifacts or
metadata for a single release!

e.g: org.eclipse.core.runtime:3.12.0 has different
dependency versions between Central and JCenter!

Malicious repositories

Bintray had a vulnerability which allowed any
user to publish dependencies on any GAV
coordinates, shadowing any real dependency!

Was used to abuse Android apps.

Man In The Middle Attack

25% of Maven Central downloads are still using
HTTP

Gradle deprecates HTTP downloads and
decommissions HTTP-based services (denied on
January 15th, 2020)

Also look at https://github.com/spring-io/nohttp

GitHub package registry

GitHub offers custom packages publications, effectively
allowing anyone to publish any module on a GitHub
Maven repository.

Trusting the source becomes extremely important!

(Currently requires authenticated access)

Malicious repositories
(Maven)

Maven uses the declared repositories of all
dependencies during resolution.

Any repository can use the id of an existing one
(try: central)

As a consequence it’s easy to introduce
malicious dependencies in any build!

Repository filtering with Gradle
⬢Know where your dependencies

come from - Precisely tell Gradle
what repository contains what
dependency

⬢Avoid leaking details about your
organization - Avoids pinging
external repositories for your
internal coordinates!

⬢Avoids ordering issues -
Repositories can be listed in any
order if they are mutually exclusive

⬢ Improves performance - No
unnecessary lookups

repositories {
 jcenter {
 content {
 includeGroup("junit")
 includeGroup("com.google.guava")
 }
 }
 maven {
 name = "myCompanyRepo"
 content {
 includeGroupByRegex("com\\.mycompany\\..*")
 }
 }
}

Dealing with vulnerable
dependencies

Dependency lifecycle doesn’t end at
publication:

- Bugs are discovered
- Vulnerabilities are discovered
- Bad metadata is published

Using rich versions in Gradle

⬢Rich versions - Allows more
accurate model of why a
dependency is needed

⬢Graph wide - Opinions of
transitive dependencies matter

⬢Allows enriching the graph with
new constraints - Consumers can
tell something about transitives

⬢Component metadata rules - For
amending existing metadata

dependencies {
 implementation("org.apache.commons:commons-compress") {
 version {
 strictly("[1.0, 2.0[")
 prefer("1.19")
 reject("1.15", "1.16", "1.17", "1.18")
 }
 because("Versions 1.15-1.18 have a CVE")
 }
}

Can be added dynamically

Tooling

Gradle wrapper checksum verification

⬢Gradle wrapper will verify
distribution checksums - On
every invocation

⬢But you need to manually check
the wrapper checksum itself - To
avoid a compromised wrapper!

⬢Expected checksum is checked
in - Using a compromised
distribution requires access to the
source repository

In gradle-wrapper.properties:

distributionSha256Sum=371cb9fbebbe9880d147f59bab36d61eee122854ef8c9ee1ecf12b82368bcf10

Gradle wrapper GitHub action

⬢GitHub action - To be added to
your workflow

⬢Validates the wrapper JAR
checksum itself - To avoid a
compromised wrapper!

A word about 3rd-party distributions

- Gradle “official” Docker image is not endorsed by
Gradle

- Debian and other distributions are not official
Gradle releases

- They use different dependencies
- They build their own!
- But they pretend to be Gradle (same

version number)
- Please always prefer official releases (and Gradle

wrapper if possible!)

Abusing external services

Using Gradle build cache as an example:

- Requires write access to the cache (so
compromised machine or malicious
employee)

- Write custom client to write malicious
output to the cache for a known key
(SHA1)

- Clients will download compromised entries

Reproducible builds

Any release should be reproducible byte to byte

In practice many things can go wrong:

- Dynamic dependencies (ranges, 1.+, latest, …)
- Undeclared inputs
- Timestamps/debug symbols/absolute paths/...
- Dependencies removed from remote repositories
- Compiler bugs
- etc

Different approaches to
reproducibility

The Apache Software Foundation™ way:

- Only sources matter
- Binaries (zip, jar, …) on Central or

dist.apache.org are convenience
- Trusting requires you to build from sources

Bootstrapping problem: what about transitive
dependencies?

Different approaches to
reproducibility

The Google way:

- Only sources matter
- No binaries, ever
- Single mono-repository

What about reuse?

We have to make compromises

⬢Dependency locking - Make sure
you can reuse the same versions
later

⬢Checksum verification - Binaries
will not be compromised

⬢Reproducible archives - Avoid
timestamps, consistent ordering of
archive entries, ...

See https://reproducible-builds.org/

If multiple organizations can build the same binaries, byte to
byte, from the same sources:

- Reinforces trust
- Improves build quality
- Makes it harder to compromise

A set of best practices:

Thank you!

Gradle: https://www.gradle.org

@ljacomet

https://www.gradle.org

References

⬢ Small world with high risks: a study of security threats in the npm ecosystem
⬢ Want to take over the Java ecosystem? All you need is a MITM!
⬢ The NPM package that walked away with all your passwords
⬢ A Post-Mortem of the Malicious event-stream backdoor
⬢ Backdoor code found in 11 Ruby libraries
⬢ ESlint Postmortem for Malicious Packages Published on July 12th, 2018
⬢ Inside the Unnerving CCleaner Supply Chain Attack
⬢ https://blog.autsoft.hu/a-confusing-dependency/

https://blog.acolyer.org/2019/09/30/small-world-with-high-risks/
https://medium.com/bugbountywriteup/want-to-take-over-the-java-ecosystem-all-you-need-is-a-mitm-1fc329d898fb
https://blog.reversinglabs.com/blog/the-npm-package-that-walked-away-with-all-your-passwords
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://www.zdnet.com/article/backdoor-code-found-in-11-ruby-libraries/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.wired.com/story/inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/
https://blog.autsoft.hu/a-confusing-dependency/

Upcoming Gradle talk

Developer Productivity Engineering
By Hans Dockter

Wed. 5th at 13:00 in Room C4

