
Dancing on Thin Ice ⛸

Leveraging Software Bill
of Materials in Java

César Soto Valero
cesarsotovalero.net

Source: DALL·E

https://www.cesarsotovalero.net

$ whoami

Software Engineer @ UCLV

PhD Student @ KTH

Data Engineer @ SEB

2013

2018

2023

November 2018

My code

Some code

My software
project

🏗 (Not this) Supply Chain

⛓ Software Supply Chain

“A software supply chain is composed of

the components, libraries, tools, and

processes used to develop, build, and

publish a software artifact.”
Wikipedia

“The software supply chain is made up of

everything and everyone that touches your

code in the software development lifecycle

(SDLC), from application development to the

CI/CD pipeline and deployment.”
Red Hat

“The process and components involved

in the creation, distribution, and

maintenance of software.” OWASP

“The sequence of steps resulting in the

creation of an artifact.” SLSA

“A software supply chain is composed of

the components, libraries, tools, and

processes used to develop, build, and

publish a software artifact.”

⛓ Software Supply Chain

Wikipedia

“The software supply chain is made up of

everything and everyone that touches your

code in the software development lifecycle

(SDLC), from application development to the

CI/CD pipeline and deployment.”
RedHat

“The process and components involved

in the creation, distribution, and

maintenance of software.” OWASP

“The sequence of steps resulting in the

creation of an artifact.” SLSA

⛓ Software Supply Chain

Source: https://slsa.dev/spec/v1.0/terminology

https://slsa.dev/spec/v1.0/terminology

⛓ Software Supply Chain Threats

Source: https://slsa.dev/spec/v1.0/terminology

https://slsa.dev/spec/v1.0/terminology

💻Software Development Lifecycle

Source: “Journey to the Center of Software Supply Chain Attacks,” in IEEE Security & Privacy, 2023

😐Misconceptions

1. Open-source software is safe

2. Dependency risks are low

3. Vendors are secure

Source: https://xkcd.com/2347

https://xkcd.com/2347

Source: https://sap.github.io/risk-explorer-for-software-supply-chains

🤔Attack Vectors

Source: "Sok: Taxonomy of Attacks on Open-Source Software Supply Chains" in IEEE Symposium on Security and Privacy (SP), 2023

https://sap.github.io/risk-explorer-for-software-supply-chains

Software Supply Chain Attacks

Software Supply Chain Attacks

Software is outdated or unpatched

Lack of transparency

Third-party components can be compromised

The focus of attackers has shifted
from "push" to "pull"

🐛Log4Shell Vulnerability (2021)

🐛Log4Shell Vulnerability (2021)

Source: Swiss Government Computer Emergency Response Team

https://www.govcert.admin.ch/

🐛Log4j Vulnerability (2021)

● Hidden risks of open-source dependencies

● Complex dependency trees

● It could have been detected using SBOMs

Source: https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2021/log4j.md

🐛GCP Golang Buildpacks Old Compiler Injection (2022)

Source: https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

🐛GCP Golang Buildpacks Old Compiler Injection (2022)

Source: https://zt.dev/posts/gcp-buildpacks-old-compiler

gcloud alpha builds submit --pack image=gcr.io/fkautz-dev/sample-go
===> ANALYZING

[analyzer] Previous image with name "gcr.io/571261452737/sample-go" not found
===> RESTORING
===> BUILDING
[builder] === Go - Runtime (google.go.runtime@0.9.1) ===
[builder] Using runtime version from go.mod: 1.14
[builder] Installing Go v1.14
[builder]
--
[builder] Running ...

GCP Golang
Buildpack Go Compilers

pull

latest

old

https://zt.dev/posts/gcp-buildpacks-old-compiler

● Hidden risks of build systems

● Never assume transparency

● It could have been detected using SBOMs!

🐛GCP Golang Buildpacks Old Compiler Injection (2022)

Source: https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2022/golang-buildpacks-compiler.md

🐛NPM Package mathjs-min Credential Stealer (2023)

Source: https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

🐛NPM Package mathjs-min Credential Stealer (2023)

Source: https://blog.phylum.io/phylum-discovers-npm-package-mathjs-min-contains-discord-token-grabber

Malicious GitHub user

Malicious package

Brandjacking
 attack

publish

https://blog.phylum.io/phylum-discovers-npm-package-mathjs-min-contains-discord-token-grabber/

● Hidden risks of package managers

● New attackers tactics to deceive developers

● It could have been detected using SBOMs

Source: https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

🐛NPM Package mathjs-min Credential Stealer (2023)

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/2023/mathjs-min.md

What is an SBOM, btw?

📜SBOMs

“A Software Bill of Materials (SBOM) is a formal,

machine-readable inventory of software

components and dependencies, information

about those components, and their hierarchical

relationships.”

Source: https://www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf

National Telecommunications and
Information Administration

https://www.ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf
https://www.ntia.gov/
https://www.ntia.gov/

📜Inventory of Software Components

🎯Purpose of SBOMs

EU Cybersecurity Strategy (2020)

White House Executive Order (2021)

DARPA on Integrity of Open Source (2022)

Safeguard against software supply chain attacks

Make software transparent

Source: “Software Bill of Materials (SBOM) and Cybersecurity Readiness,” The Linux Foundation, 2022

https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%20Research/State%20of%20Software%20Bill%20of%20Materials%20-%20Report.pdf

Components of an SBOM

📃Components of an SBOM

1. SBOM metadata

2. Project metadata

3. Inventory of dependencies

. . .
 https://cyclonedx.org

https://spdx.dev

https://cyclonedx.org/
https://spdx.dev/

📃SBOM Metadata

{
 "bomFormat" : "CycloneDX",
 "specVersion" : "1.4",
 "metadata" : {
 "timestamp" : "2024-01-26T15:04:45Z",
 "tools" : [
 { "name" : "CycloneDX Maven plugin",
 "version" : "2.7.5" }
],
...

{
 "SPDXID": "SPDXRef-DOCUMENT",
 "spdxVersion": "SPDX-2.3",
 "creationInfo": {
 "created": "2024-01-26T15:04:45Z",
 "creators": [
 "Tool: GitHub.com-Dependency-Graph"
],
 "comment": "..."
 },

📃Project Metadata

"component" : {
 "group" : "org.asynchttpclient",
 "name" : "async-http-client-project",
 "version" : "2.12.3",
 "hashes" : [{ "alg" : "SHA-256",
 "content" : "70997d52db...3b6172ebb5"}, ...],
 "licenses" : [...],
 "externalReferences" : [{
 "url" : "http://github.com/AsyncHttpClient/async-http-client" }
],
 "bom-ref" :
"pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom"
 }
...

http://github.com/AsyncHttpClient/async-http-client

🔍Checksums

Tampering

async-http-client-project
v2.12.3
(JAR)

70997d52dbffd4e797c467b2062
c6ba9b8b5a7380ff2884779f274
3b6172ebb5

SHA-256

Integrity

Reproducible builds

📃Third-Party Dependencies

"components" : [
 { "group" : "com.sun.activation",
 "name" : "jakarta.activation",
 "version" : "1.2.2",
 "bom-ref" :
"pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar"
 } ...
],
"dependencies" : [
 {
 "ref" :
"pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom",
 "dependsOn" : [
 "pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar"

]
 } ...] }

📦Third-Party Dependencies

Figure made with: https://github.com/ferstl/depgraph-maven-plugin

🤔Do I have a licence?🤔Vulnerable?

🤔Do I depend on this?

https://github.com/ferstl/depgraph-maven-plugin

Use cases of SBOMs

🔍
Vulnerability

Scanning

📦
Dependency
Management

🤝
Compliance

Checking

🔍Vulnerability Scanning

Project
Code

Build
Engine

Scan
Service

deploy produce SBOM

Report

🤝Compliance Checking

● Meet legal standards

● Check license compliance

● Better visibility

Source: https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity

📦Dependency Management

● Understand dependencies

● Detect outdated dependencies

● Reduce code bloat

Source: "The Multibillion Dollar Software Supply Chain of Ethereum" in IEEE Computer, 2022

 Java dependencies

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>3.2.1</version>
<parent>

Parent

<groupId>org.springframework.samples</groupId>
<artifactId>spring-petclinic</artifactId>
<version>3.2.0-SNAPSHOT</version>

Project

Direct
dependencies …

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <version>3.2.1</version>
</dependency>

org.springframework
spring-web
6.1.2

org.springframework
spring-webmvc
6.1.2

Transitive
Dependencies …

 Package Managers (Maven)

$ mvn dependency:tree $ mvn dependency:tree -DoutputType=dot -DoutputFile=deps.dot
$ dot -Txdot_json -o deps.json deps.dot

Terminal output JSON file from the previous output

 Package Managers (Gradle)
$ gradle dependencies --configuration runtimeClasspath

Terminal output

Source: https://github.com/gradle/gradle/issues/21894

https://github.com/gradle/gradle/issues/21894

📦Dedicated Tools

https://github.com/ASSERT-KTH/depclean

● Extra metadata from dependencies:

○ Direct / Transitive / Inherited

○ Used / Unused

○ JAR size

● Debloated pom.xml

. . .

DepClean

https://github.com/ASSERT-KTH/depclean

SBOM producers for Java projects

GitHub UI

Source: https://github.blog/2023-03-28-introducing-self-service-sboms

Output

https://github.blog/2023-03-28-introducing-self-service-sboms

GitHub Actions

Source: https://github.com/slsa-framework/slsa-github-generator

https://github.com/slsa-framework/slsa-github-generator

Dedicated Plugins

Example: https://github.com/CycloneDX/cyclonedx-maven-plugin

<build>
 <plugins>
 <plugin>
 <groupId>org.cyclonedx</groupId>
 <artifactId>cyclonedx-maven-plugin</artifactId>
 <version>2.7.11</version>
 <executions>
 <execution>
 <goals>
 <goal>makeBom</goal>
 </goals>
 <phase>package</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

● cyclonedx-maven-plugin

● cyclonedx-gradle-plugin

● spdx-maven-plugin

● spdx-gradle-plugin

. . .

https://github.com/CycloneDX/cyclonedx-maven-plugin

GraalVM

Source: https://www.graalvm.org/22.2/reference-manual/native-image/debugging-and-diagnostics/InspectTool/#software-bill-of-materials-sbom

<plugin>
 <groupId>org.graalvm.buildtools</groupId>
 <artifactId>native-maven-plugin</artifactId>
 <version>${graalvm.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <buildArgs>
 <buildArg>-H:IncludeSBOM=cyclonedx</buildArg>
 </buildArgs>
 </configuration>
</plugin>

$ native-image . . . -H:IncludeSBOM=cyclonedx

Native image
with SBOM

⚠Only on GraalVM Enterprise

Build
executable

$ native-image-inspect --sbom <path_to_binary>

Get
 SBOM

https://www.graalvm.org/22.2/reference-manual/native-image/debugging-and-diagnostics/InspectTool/#software-bill-of-materials-sbom

Challenges with SBOMs

Tool Consistency

Source: “Challenges of Producing Software Bill of Materials for Java,” in IEEE Security & Privacy, 2023

Sharing & Distribution

Source: “An Empirical Study on Software Bill of Materials: Where We Stand and the Road Ahead,” in ICSE, 2023

Wrapping up…

Source: DALL·E

👋Summary

● SBOMs are essential for software supply chain security

● SBOMs are increasingly getting attention and adoption

● SBOMs are well supported in the Java ecosystem

Business

Practitioners

Curious

Researchers

What to read next❓

