
Enter The Parallel Universe
Of The Vector API

Presented by Simon Ritter, Deputy CTO | Azul

2

The Vector API (JDK 15 and Earlier)

• This is not what we are here to talk about today

import java.util.Vector;

Vector<String> myStrings = new Vector<>();

myStrings.add("Foo");

int count = myStrings.size();

3

Concurrent or Parallel:
What Is The Difference?

4

Concurrency

Two or more tasks that start, run, and complete in
overlapping time periods.

There is no guarantee they'll ever both be running
at the same time

5

Parallelism

Two or more tasks that run at the same time

6

High-Level Concurrency

7

Machine-Level Concurreny

CPU 1

CPU 2

8

Processor-Level Concurrency

9

Concurrent Programming In Java

• Java provides several different approaches to concurrent programming

• The hardest way is to use the Thread class
o Manually code splitting data, processing and recombining data

• Java has introduced many libraries to make this easier
o JSR-166 Concurreny utilities

o Semaphore, mutex, etc.

10

Concurrent Programming in Java

• JDK 7 introduced the fork-join framework

• Recursively decompose a task into smaller subtasks

11

Concurrent Programming In Java

• JDK 8 introduced streams and Lambda expressions to Java
o Functional style of programming

• Library call hides complexities of concurrency
o Uses fork-join framework

• But can deliver non-deterministic results

List<Integer> values = getData();

values.stream()
 .mapToInt(Integer::intValue)
 .sum();

values.parallelStream()
 .mapToInt(Integer::intValue)
 .sum();

12

Concurrent Programming In Java

• Don't assume that doing things concurrently will do things faster...

• ...or more efficiently

• Some operations decompose well to concurrent operations: sum(), min(), max()

• Some operations do not: sort()

• Do not use parallel streams for things that cannot easily be split or do IO
o e.g. processing lines being read from a file (inherently sequential)

• Concurrent programming can use multiple execution units (CPUs, cores) to possibly improve performance
o But does not require them

13

Some Background on
Vectors and SIMD

14

Vector Mathematics Using Matrices

• Examples

[4, 3, 7] + [3, 5, 2] = [7, 8, 9]

2
3. = 29
4]

]]

]

[2, 3, 4] X

15

Single Instruction Multiple Data (SIMD)

• SIMD enables parallel processing within a single execution unit

• Uses very wide registers to hold multiple values
o Each register has a number of lanes

10
14
11
8

12
16
13
10

+2
+2
+2

+2

10 14 11 8

+2

12 16 13 10

+2+2 +2

16

Single Instruction Multiple Data (SIMD)

• First introduced in 1966

ILLIAC IV

17

Single Instruction Multiple Data (SIMD)

• Supercomputers of the 1970s

17

CDC Star-100 Texas Instruments ASC

18

SIMD Instruction History

• 1994: HP PA-RISC processor, MAX instructions (32-bit and 64-bit registers)

• 1995: Sun Microsystems UltraSPARC processor, VIS instructions (64-bit registers)

• 1996: Intel Pentium P5 processor, MMX instructions (64-bit registers)

• 1999: Intel Pentium III processor, SSE intsructions (128-bit registers)

• 2011: Intel SandyBridge processor, AVX instructions (128-bit registers)

• 2013: Intel Haswell processor, AVX-2 instructions (256-bit registers)

• 2016: Intel Xeon Phi processor, AVX 512 instructions (512-bit registers)

19

The Vector API
(JDK 21, Sixth Incubator)

20

Vectors In Java

• Vector includes methods for operations that are common to all vector types
o add(), sub(), div(), mul(), min(), max(), etc.

AVX 2 Register (256 bit)

Vector<E>

Vector<Integer>int intintintintintintint

Lanes

21

Vectors In Java

• Adds methods for operations that are type-specific
o e.g. fromArray()

Vector<E>

ByteVector

ShortVector

IntVector

LongVector

FloatVector

DoubleVector

22

Vectors In Java
AVX 2 Register (256 bit)

Vector<E>

Vector<Integer>int intintintintintintint

S_256_BIT VectorShape

VectorShape.S_64_BIT
VectorShape.S_128_BIT
VectorShape.S_256_BIT
VectorShape.S_512_BIT

VectorShape.S_Max_BIT

23

Vector Shape

• Use S_Max_BIT to represent the biggest register on the machine currently being used
o Better cross-platform code

• Intel processors can support more than one shape
o ARM processors only support one shape (S_Max_BIT), which can be 128 to 2048 bits (vendor specific)

24

Vector Species

• A Vector has a species, represented by VectorSpecies<E>

• This is a combination of the element type and the shape

• The VectorSpecies encapsulates three pieces of information:

o ETYPE: Primitive lane type

o VLENGTH: Vector lane count

o SHAPE: The vector shape

Species[ETYPE, VLENGTH, SHAPE] e.g. Species[int, 8, S_256_BIT]

25

Vector Species

• Simplifies determining aspects of how to use Vectors on a specific machine

private final static VectorSpecies<Integer> INT_SPECIES = IntVector.SPECIES_256;
private final int[] arrayA = new int[1_000_000];
private final int[] arrayB = new int[1_000_000];

...
int vectorLoopSize = INT_SPECIES.loopBound(arrayA.length);
int numberOfLanes = INT_SPECIES.length();

for (int i = 0; i < vectorLoopSize; i += numberOfLanes) {
 IntVector va = IntVector.fromArray(INT_SPECIES, arrayA, i);
 IntVector vb = IntVector.fromArray(INT_SPECIES, arrayB, i);

 // Use the vectors
}

26

Vector Mask

• When processing an array, the length may not divide cleanly by the number of lanes

• Example:
o An int array has 30 elements and we're using our 256 bit example vector

o The loop stride length is 8 (number of vector lanes)

o The last iteration only requires 6 of the 8 lanes

• We can use a mask to suppress the operation on the last two lanes of the vector in the final iteration

• Depending on what type of operation is being performed the mask will have different effects

"An operation suppressed by a mask will never cause an exception or side effect
of any sort, even if the underlying scalar operator can potentially do so."

27

Vector Mask
for (int i = 0; i < vectorLoopSize; i += numberOfLanes) {
 IntVector va = IntVector.fromArray(INT_SPECIES, arrayA, i);
 IntVector vb = intVector.fromArray(INT_SPECIES, arrayB, i);

 // Use the vectors
}

28

Vector Mask
for (int i = 0; i < vectorLoopSize; i += numberOfLanes) {
 VectorMask<Integer> mask = INT_SPECIES.indexInRange(i, arrayA.length);
 IntVector va = IntVector.fromArray(INT_SPECIES, arrayA, i, mask);
 IntVector vb = IntVector.fromArray(INT_SPECIES, arrayB, i, mask);

 // Use the vectors
}

29

Vector Mask

• A mask can also be used to perform conditional execution for a vector
o If a lane is set, the value comes from the second vector passed as a parameter

o If a lane is unset, the value comes from the original vector

VectorMask<Integer> mask = createMask();

IntVector va = getVectorA();
IntVector vb = getVectorB();

IntVector combined = va.blend(vb, mask);

30

VectorShuffle

• Is used to change the order of the elements in a vector

IntVector va = getVectorA();
int[] shuffleValues = {1, 3, 5, 7, 0, 2, 4, 6};

VectorShuffle<Integer> shuffle =
 VectorShuffle.fromValues(INT_SPECIES, shuffleValues);

va.rearrange(shuffle);

31

Vector Operators

• What can we do with our Vectors?

• Types of operators
o Associative: order does not matter (e.g. ADD, AND)

o Binary: Takes two arguments (e.g. DIV, POW)

o Comparison: (e.g. EQ, NE, LT)

o Conversion: (e.g. D2B, B2F, F2D)

o Ternary: Takes three arguments (e.g. FMA)

o Test: (e.g. IS_FINITE, IS_NEGATIVE)

o Unary: Takes one argument (e.g. LOG, NEG, NOT)

• See the VectorOperators class for the full llist

32

Mathematical Operations

public float[] hypo(float[] a, float[] b) {
 float[] result = new float[a.length];

 for (int i = 0; i < a.length; i += FLOAT_SPECIES.length()) {
 var mask = FLOAT_SPECIES.indexInRange(i, a.length);
 var va = FloatVector.fromArray(FLOAT_SPECIES, a, i, mask);
 var vb = FloatVector.fromArray(FLOAT_SPECIES, b, i, mask);
 var vc = va.mul(va).add(vb.mul(vb)).sqrt();
 vc.intoArray(result, i);
 }

 return result;
}

33

Reduction Operations

• Reduce the lanes of a vector to a single value

• Eaxample: add all the values to get a total

public double average(int[] arr) {
 double sum = 0;

 for (int i = 0; i< arr.length; i += INT_SPECIES.length()) {
 var mask = INT_SPECIES.indexInRange(i, arr.length);
 var v = IntVector.fromArray(INT SPECIES, arr, i, mask);
 sum += v.reduceLanes(VectorOperators.ADD, mask);
 }

 return sum / arr.length;
}

How Well Does It Work?

35

SIMD Is Fast, Yes

• But...

• Remember that main memory access is (relatively) slow

• Larger arrays will not fit in the CPU cache
o L1 cache: 3-5 cycles

o L2 cache: 8-20 cycles

o L3 cache: 50-80 cycles

o RAM: 100+ cycles

• The further you go for your data the less improvements using SIMD will provide

36

Auto Vectorization

• The JIT compiler already includes the ability to use SIMD instructions where available

• For many situations this will deliver equivalent (or even better) results

• This becomes apparent if you turn off auto-vectorization
o -XX:-UseSuperWord

• The following results are from Tomer Zeltzer
o medium.com/@tomerr90/

37

Simple Sum (Adding Two Vectors)

38

Simple Sum (Adding Two Vectors)

39

Array Statistics

• Let's introduce a conditional

• How many elements of an array are less than, equal to and greater than the elements of a second array

int lt = 0, eq = 0; gt = 0;

for (int i = 0; i < arraySize; i += SPECIES.length()) {
 FloatVector aVector = FloatVector.fromArray(SPECIES, a, i);
 FloatVector bVector = FloatVector.fromArray(SPECIES, b, i);

 lt += aVector.lt(bVector).trueCount();
 eq += aVector.eq(bVector).trueCount();
 gt += aVector.gt(bVector).trueCount();
}

40

Array Statistics

41

Branches (Can) Slow You Down

int[] arrayA;
int[] arrayB;

for (int i = 0; i < arrayA.length; i++) {
 if (arrayB[i] & 0x1 == 0)
 arrayA[i] += arrayB[i]
}

42

HotSpot C2 JIT

42

Per element jumps
2 elements per
iteration

43

Falcon JIT

Using AVX2 vector
instructions
32 elements per iteration

Broadwell E5-2690-v4

Summary

45

Conclusions

• Vector API allows explicit programming of SIMD processing

• Simple situations will not necessarily benefit
o JIT compiler will use SIMD automatically

• More complex situations that are not recognisable by the JIT will benefit

• Benefits are reduced as the size of arrays increases
o Cache and memory latency becomes increasingly significant

• Ideally, the compiler would autovectorise all our code

46

Azul Java

• Platform Core Builds of OpenJDK provides
o TCK tested binaries (not JDK 6 or 7)

o Updates within a time defined SLA

o All security patches and bug fixes for all updates

o CPUs and PSUs

o 24x7 support issue reporting

• Platform Prime Builds of OpenJDK provide
o C4 fully concurrent, pauseless garbage collection

o Falcon C2 JIT compiler replacement, delivering better optimisations (including enhanced use of vectors)

o ReadyNow JIT compiler profile to reduce warmup time

46

Thank You.
Simon Ritter, Deputy CTO

sritter@azul.com

@speakjava

