
Copyright © 2024, Oracle and/or its affiliates

Project Leyden
Capturing Lightning in a Bottle

Per Minborg (@pminborg)

Java Core Library Team, Oracle

1

Copyright © 2024, Oracle and/or its affiliates

🔥 Java Projects (in Alphabetic Order)
• Amber - Smaller Java language features (23 JEPS)

• Babylon - Extend Java’s reach; E.g. SQL, ML, and GPUs

• Leyden - “Capturing Lightning in a Bottle”

• Lilliput - Downsize Java Object headers from 128 to 64 bits or less

• Loom - Light-weighted threads

• Panama - Native Function & Memory API, Vector Support

• Valhalla - “Codes like a class, works like an int”

• ZGC - Scalable low-latency garbage collector

2

Copyright © 2024, Oracle and/or its affiliates

🔥 Java Projects (in Iceberg Order)

3

Copyright © 2024, Oracle and/or its affiliates

Project Leyden ✋
• Project Leyden is about improving the startup, warmup, and footprint

of Java applications
• Startup is the time it takes to get to the first useful unit of work

• Warmup is the time it takes for the application to reach peak performance

• (Footprint is the storage resources required by an application)

• They all include work done by the application (e.g., parsing
configuration files), and work done on behalf of the application (e.g.,
loading and compiling classes)

• Startup and warmup are an issue for Java applications because Java
is highly dynamic

4

Copyright © 2024, Oracle and/or its affiliates

But Wait …

5

6
Copyright © 2023, Oracle and/or its affiliates

Copyright © 2024, Oracle and/or its affiliates

But Wait Again…

7

8
Copyright © 2023, Oracle and/or its affiliates

Copyright © 2024, Oracle and/or its affiliates

Leyden: Means
• Shift computation temporally; later and earlier in time

• Constrain Java’s natural dynamism, to enable more and better
shifting

• Selectively, per the needs of each particular program

• Compatibly, preserving program meaning

9

Copyright © 2024, Oracle and/or its affiliates10

Copyright © 2023, Oracle and/or its affiliates

Java is Highly Dynamic
• Wait, what? I thought Java was a “static” language!
• The terms “static” and “dynamic” are complex and frequently abused

• Assuming “static” means “at compile time” and dynamic means “at run time”
(already a bad assumption), is Java statically typed, or dynamically typed?
• Answer: yes!
• Java has a static type system, enforced at compile time
• Java also has a dynamic type system, enforced at run time

• The two have much overlap (e.g., both obey the same subtyping rules), but
also significant differences in both directions
• Some things are only part of the static type system: generics, checked exceptions,

definite assignment analysis, overload resolution, etc
• Others are dynamic but not static: ArrayStoreException for array writes

• Java is both statically and dynamically typed

11

Copyright © 2023, Oracle and/or its affiliates12

Dictionary: Static vs Dynamic

Static (sta-tic)

1. exerting force by reason of weight
alone without motion

2. of or relating to bodies at rest or
forces in equilibrium

3. showing little change (a static
population)

4. characterized by a lack of
movement, animation, or progression

5. standing or fixed in one place (see
stationary)

Dynamic (dy-nam-ic)

1. marked by usually continuous and
productive activity or change
(a dynamic city)

2. Energetic, forceful (a dynamic
personality)

3. of or relating to physical force or
energy

4

Copyright © 2023, Oracle and/or its affiliates

Static vs Dynamic
• The main distinction here is changing vs unchanging

• One aspect is what is changing or not
• In the context of languages, we often think only about static vs dynamic type checking

• But, Java has
• Dynamic typing (array store checks, casting)
• Dynamic class loading and verification
• Dynamic class redefinition
• Dynamic compilation (JITting)
• Dynamic recompilation (deoptimization)
• Dynamic linkage and access control
• Dynamic dispatch (virtual methods)
• Dynamic introspection (instanceof, reflection)
• …

• Java is pretty dynamic!

13

Copyright © 2023, Oracle and/or its affiliates

Static vs Dynamic
• Another important distinction is over what period is something changing or not
• In the context of languages, we often think only about compile vs run time
• In reality, there are many interesting phase transitions, often fine-grained ones

 static final long APP_START_MS = System.currentTimeMillis();

• Is this static or dynamic?
• Well, it says “static”
• But, the initializer runs at run time, which sounds dynamic
• But but, the variable’s value is held constant for its visible lifetime (from class initialization to

JVM exit), which sounds static
• But but but, this lifetime does not coincide with “compile vs run time”

• The JVM optimizes static final fields aggressively, inlining them into compiled code,
even though their values were “born dynamic”

14

Copyright © 2023, Oracle and/or its affiliates

Static and Dynamic: Choose Both
• The Java answer is rarely “choose one, lose one”
• Instead, static and dynamic reasoning are intertwined and balanced

• Optimizing entities that “look static” but were
“born dynamic” is a core JVM competency
• Static field initialization
• Class loading
• Many, many JIT optimizations

• As is hiding the evidence if the thing that “looks
static” eventually changes
• CHA-based speculative optimization
• Profile-driven deoptimization

15

Copyright © 2023, Oracle and/or its affiliates

What Happens During Startup?
• Activities that are part of your program or framework (and any libraries you might use)

• Reading config files

• Scanning for annotations

• Opening sockets, registering listeners

• Creating loggers

• JVM activities on behalf of your program
• Class loading

• Reading classes from disk
• Classfile validation and metadata construction
• Running static initializers

• Interpretation

• Profile gathering

• Callsite linkage, constant pool resolution

16

Copyright © 2023, Oracle and/or its affiliates

What Happens During Warmup?
• Activities that are part of your program or framework
• Populating caches

• JVM activities on behalf of your program
• JIT compilation of hot code
• Tiered – C1 vs C2/Graal

17

Copyright © 2023, Oracle and/or its affiliates

Why Do We Do It This Way?
• It may sound kind of inefficient to do all this every time the program starts
• So, why do we do it this way?
• Dynamic features like on-the-fly class loading and reflection makes Java programs

more expressive
• Dynamic compilation produces better code quality, because the compiler has more

information with which to make better optimization decisions
• Current hardware configuration, including exact processor model
• Profiling data about how has this run of the program behaved
• Can (re)optimize programs based on their observed behavior, not just their code

• All this dynamism makes for excellent peak performance and user
convenience
• The cost of all this dynamism is slower startup and warmup
• But this is still a good tradeoff for many applications!

18

Copyright © 2023, Oracle and/or its affiliates

Startup and Warmup

19

Ti
m

e
pe

r t
as

k

0

75

150

225

300

Task repe22ons
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Typical
Ideal

Class initialization activity
unique to first iteration
(CPU milliseconds)

Online JIT activity
for warmup
(CPU seconds)

Copyright © 2023, Oracle and/or its affiliates

Startup and Warmup

20

Ti
m

e
pe

r t
as

k

0

75

150

225

300

Task repe22ons
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Typical
Ideal

To improve startup,
push the first point down

To improve warmup,
push the entire curve down

Copyright © 2023, Oracle and/or its affiliates

Improving Startup and Warmup
• To push these curves down, we have to shift work off the critical path
• Could shift work later in time, such as by laziness

• Could shift work earlier in time, from run time to build time

• We can shift work that is part of the application (e.g., running
application or framework code), as well as work on behalf of the
application (e.g., compiling application code)

• The JDK already employs a number of computation-shifting
techniques, and we can do more

21

Copyright © 2023, Oracle and/or its affiliates

Shifting Computation
• Java already has plenty of features that can shift computation

• Many fall out of the normal semantics of Java programs
• Compile-time constant folding (shifts earlier)

• Garbage collection (later)

• Lazy class loading and initialization (later)

• Some require work by the user to enable
• Experimental ahead-of-time (AOT) compilation (earlier)

• Pre-digested Class-Data Sharing archives (CDS) (earlier)

• Shifting work is fair game as long as the program’s meaning is
preserved

22

Copyright © 2023, Oracle and/or its affiliates

Shifting Computation - Java Memory Model
• Semantics within a thread as-if-serial semantics

• Reordering allowed preserving “Program Order”

• Threads have different views of data

• “Happens-Before”, hb(x, y)

• Remove redundant synchronization

23

Copyright © 2023, Oracle and/or its affiliates

Shifting Computation - HW
• Out-of-Order Execution

• Speculative branching

• SIMD

• CPU caches

• And more …

24

Leyden Will Expand Options for Shifting
• Some kinds of shifting will likely require no specification changes
• E.g., expand lambdas into ordinary bytecode at build time (earlier)

• Speculatively compiling code ahead-of-time

• Others will definitely require specification changes
• E.g., eliminate dead code (stripping) (earlier)

• Yet others may involve new platform features to allow developers
to express temporal constraints directly in the programming model
• lazy static final FOO = () -> Foo()

• computed constants

25
Copyright © 2023, Oracle and/or its affiliates

Copyright © 2023, Oracle and/or its affiliates26

Copyright © 2023, Oracle and/or its affiliates

Computed Constants
• For some computations, shifting forward or backwards in time is

“obviously safe”
static final int x = 1 + 2;

• But for interesting computations, we may need some hints from the
user
• What form should those hints take?

• The JVM contains some optimizations for mutable state that is known
to eventually converge to a steady state
• Within the JDK, these are marked with @Stable, and can be constant folded

/ inlined into generated code as if it were final

• But, @Stable is an internal annotation – user code can’t do this (yet)

27

Copyright © 2023, Oracle and/or its affiliates

Computed Constants
• Exposes the @Stable optimizations to user code:

// 1. Declare a computed constant value

private static final ComputedConstant<Logger> LOGGER =

 ComputedConstant.of(() -> Logger.getLogger("com.foo.Bar"));

static Logger logger() {

 // 2. Access the computed value

 // (evaluation made before the first access)

 return LOGGER.get();

}

28

Copyright © 2023, Oracle and/or its affiliates

Computed Constants
• Looks like just a library for lazy initialization, but engages JVM

optimizations for stable values

• Allows fine-grained selection of “shift this later in time”, without
giving up the performance of static final fields
• May eventually be extended to permit shifting earlier in time, but more

research is needed here

• Provides benefits for both static and instance variables.

• Can be used to replace CHI and DCLI.

29

Copyright © 2023, Oracle and/or its affiliates

Computed Constants
class Fibonacci {

 private final List<ComputedConstant<Integer>> list;

 public Fibonacci(int upperBound) {
 list = ComputedConstant.of(upperBound, this::number);
 }

 public int number(int n) {
 return (n < 2)
 ? n
 : list.get(n - 1).get() + list.get(n - 2).get();
 }

}

30

Copyright © 2023, Oracle and/or its affiliates

Constraining Dynamism
• Some forms of shifting may not be practical or safe without accepting

additional constraints on the program’s execution
• E.g., “Class X won’t change”

• Some programs may be willing to accept some constraint on Java’s natural
dynamism, if there is sufficient benefit
• Different programs may want to make different tradeoffs here

• Some programs can even tolerate the ultimate constraint on dynamism, the
“closed-world assumption”
• Forbid dynamic class loading and severely limits reflection

• But, many applications (and developers) have problems with this constraint
• Leyden will explore a broad range of potential constraints
• E.g., “no class redefinition for module M”

• Developers can then choose how to trade functionality for performance

31

Copyright © 2023, Oracle and/or its affiliates

Condensers
• Key new tool of Leyden is condensers

• A condenser is a tool in the JDK that
• Performs some of the computation encoded in a program image
• Thereby shifting it earlier in time

• Transforms the image into a new image, possibly containing
• New code (e.g., ahead-of-time compiled methods)
• New data (e.g., serialized heap objects)
• New metadata (e.g., pre-loaded classes)
• New constraints (e.g., no class redefinition)

32

Copyright © 2024, Oracle and/or its affiliates33

Copyright © 2023, Oracle and/or its affiliates

Condensers
• Condensers are meaning-preserving
• The resulting image has the same meaning as the original, under the selected

set of constraints

• Condensers are composable
• The image output by one condenser can be the input to another

• A particular condenser can be applied multiple times, if needed

• Condensers are selectable
• Developers choose how to condense, and when
• If you’re testing or debugging, then don’t bother — just run normally

• Insofar as shifting computation requires accepting constraints, you can trade
functionality for performance via the condenser configuration you choose

34

Copyright © 2023, Oracle and/or its affiliates

Shifting Today: Class Data Sharing (AppCDS) ✋
• Class Data Sharing was introduced in JDK 5
• Cache data (parsed classfile bytes) and metadata for common system classes

• Improves startup since every run starts with loading the same core classes

• Evolved significantly over time
• Cache dynamically generated lambda proxy classes (JDK 8)

• Cache application classes as well as system classes (“AppCDS”, JDK 10)

• Cache selected “pure” heap objects (e.g., the default module graph, JDK 12)

• CDS will continue to be a key tool for improving startup, and will be
enhanced through Leyden
• Cache dynamically collected profile data, compiled code, and more …

35

Copyright © 2023, Oracle and/or its affiliates

Using AppCDS
• AppCDS uses an archive file which contains cached class metadata
• Archive file is memory-mapped at runtime, is used to accelerate class loading

• The JDK ships with a default archive, which is always used unless disabled
• Generated as part of the JDK build
• Contains metadata on JDK classes that are likely to be loaded at startup

• Alternate archive file can be specified with command line flags
• You can create your own archive and specify which classes to pre-process
• This can include both JDK classes and application classes

• Most people don’t use AppCDS today
• But probably should, can get a reasonable startup improvement for relatively

little work

36

Copyright © 2023, Oracle and/or its affiliates

Using AppCDS
• To use AppCDS today, we typically do the following steps
• Perform one or more “training runs” of the program, using the

-XX:DumpLoadedClassList flag, which dumps out a list of loaded classes
• Multiple lists can be merged, they’re just text files

• Create an AppCDS archive, using the -Xshare:dump,
-XX:SharedClassListFile, and -XX:SharedArchiveFile flags

• Run program with the archive, using the -XX:SharedArchiveFile flag

• Example: javac compiling one file
• CDS explicitly disabled: 296ms
• Default CDS: 259ms
• AppCDS (requires training run): 152ms

• AppCDS functionality may eventually be packaged as a condenser

37

Copyright © 2023, Oracle and/or its affiliates

Training Runs
• AppCDS generally relies on a training run
• Exercises the startup and warmup code paths, under observation

• Allows us to discover ahead-of-time what we’d otherwise discover in the
early phases of run time

• Usually requires writing a small driver program (like an integration test)

• Runs at build time (like an integration test)

• Training runs will show up elsewhere in our startup story, as we’ll see
• Training runs are effective for the same reason dynamic compilation is

effective – it allows us to base analysis on what the program actually does

38

Copyright © 2023, Oracle and/or its affiliates

How far can we get
without imposing new constraints on existing code,

without making any specification changes, and
without sacrificing any of Java’s natural dynamism?

How far can we get
simply by leveraging

existing HotSpot components?

39

Copyright © 2023, Oracle and/or its affiliates

The Circle of Life (for Java Code) (Simplified)

40

Copyright © 2023, Oracle and/or its affiliates

Background: Tiered Compilation in HotSpot
• Tier 0: JVM bytecode interpreter
• Collects full profile information (execution paths and types)

• Tier 1: Simplest possible code
• No profiling; use is rare

• Tier 2: Simple code with profiling at method entry only
• Limited use

• Tier 3: Simple code with full profiling
• Spins up quickly

• Tier 4: Optimized code which benefits from profiling, but collects none
• Assumes all required classes have been initialized
• Can de-optimize on awkward inputs (lower tiers cannot)
• De-optimization is followed by further profiling, and re-optimization

41

Copyright © 2023, Oracle and/or its affiliates

Tiered Compilation: Startup, Warmup, and Peak
• Startup is handled by slower tiers 0..3, starting with the interpreter (0)
• Startup resolves symbols, runs class initializers, etc.

• Warmup happens as code shifts from lower tiers to higher ones
• First, lower tiers must gather profiles

• The JIT then uses those profiles to optimize Tier 4 code
• This takes time!

• Peak is reached when all hot code stabilizes in the highest tier (4)

42

Copyright © 2023, Oracle and/or its affiliates

JIT Compilation Is Speculative
• All dynamic compilation done by the JVM is “speculative”

• We are always free to toss the compiled code and fall back to a lower
tier
• Maybe the environment changed (e.g., a new class was loaded that

invalidates an assumption used in compilation)

• Maybe profiling data told us that the code was no longer optimal

• Maybe we just ran out of space in the code cache

• Maybe the debugger caused some code to deoptimize

• So JIT compilation is a pure optimization, one we can freely do and
undo at will

43

Copyright © 2023, Oracle and/or its affiliates

Teaching CDS New Tricks
• CDS primarily caches pre-parsed class data and metadata today

• We can extend this to additionally cache
• Profiles gathered during tiers 0-3

• Compiled methods from tiers 1-4

• Class objects (reflective mirrors), not just class metadata

• Resolved constant pool references to classes, methods, and fields

• Resolved invokedynamic linkage states

• Pre-initialization of most enum and hidden classes

• Plus load-time checks to ignore cached metadata if something
changed

44

Copyright © 2023, Oracle and/or its affiliates

Speculative AOT: JIT Compilation Shifted Earlier
• Cache profiles and compiled code from training runs, for use in later runs

• Many new options
• At startup, we could schedule JIT activity earlier based on cached profiles

• Or (even more quickly), load pre-compiled code from archive

• Install the compiled code for a method after all the classes upon which it
depends have been initialized
• Even better, we can cache two kinds of code ahead-of-time

• With class-initialization checks, and without class-initialization checks

• Install the former initially, then swap in the latter after the required classes
have been initialized

45

Copyright © 2023, Oracle and/or its affiliates

AOT-Compiled Code Remains Speculative
• Java has always been both static and dynamic

• Locally static, globally dynamic

• Cached profiles and code are records of dynamic observations of an application
• The flip side of static application analysis — but requires no new constraints!

• They are used speculatively by HotSpot
• Just as they always have been: “Success is a habit, but failure is an option”
• If an assumption is violated then we de-optimize, re-profile, and re-optimize

• This approach copes well with surprises at run time
• Code sometimes changes between training and production
• Applications sometimes have distinct phases of activity

• Yet this is not surprising: On-the-fly adaptation is one of Java’s distinct strengths!
• “Something changed in the application since the training run” is just one more reason we can

deoptimize and reoptimize

• Key challenge: Optimizing the policies that govern execution-mode transitions

46

Copyright © 2023, Oracle and/or its affiliates

Case Study: javac

47

Ti
m

e
pe

r t
as

k

0

150

300

450

600

Task repe22ons
1 2 3 4 5 6 7 8 9 10

Baseline
Leyden
Ideal

• Repeatedly compile
100 small source files

• 2x startup improvement
• No change to existing

code

St
ar

tu
p

im
pr

ov
em

en
t

Warmup improvement

Copyright © 2023, Oracle and/or its affiliates

Case Study: javac
• 2x startup improvement for free!
• We can shift optimization work earlier in time, via CDS

• No new constraints, no changes to existing code

• There was no one “magic bullet” technique
• We used several already, to good effect, and we’ll keep looking for more

• AOT compilation, linkage, constant pool resolution

• This machinery doesn’t tune itself
• Many tuning adjustments needed to craft ideal compilation policies

• Policy tuning is business-as-usual in the JDK

48

Copyright © 2023, Oracle and/or its affiliates

Case study: XML Validation (SPECjvm 2008)

49

Ti
m

e
pe

r o
pe

ra
2o

n
(m

s)

200

300

400

500

600

Sample 2me (seconds)
0 10 20 30

St
ar

tu
p

im
pr

ov
em

en
t

• 8x startup improvement
• Little warmup improvement
• No change to existing code

Copyright © 2023, Oracle and/or its affiliates

Case study: XML validation (SPECjvm 2008)
• Sometimes startup is the only interesting win
• Warmup is often already okay for smaller applications

• In this case, we could decisively improve startup compared to the
baseline policy

• Benchmark noise can make it hard to decide when we’ve reached
peak performance

50

Copyright © 2023, Oracle and/or its affiliates

Case Study: Spring Boot “Pet Clinic”

51

Startup time (s)

0

1

2

3

4

3.472

Baseline (JDK 22) Unpacked
With static CDS With dynamic CDS
With Spring AOT tools

Copyright © 2023, Oracle and/or its affiliates35

Spring Boot “Pet Clinic”

4.1x startup improvement
with no change to existing
code

Copyright © 2023, Oracle and/or its affiliates

Case Study: Spring Boot “Pet Clinic”
• There are many tactics which can improve startup
• We win big because the tactics work in synergy

• Early class loading, via CDS, is a big win

• Caching compiled code is a big win

• Resolving invokedynamic call sites earlier is a lesser win

• Clever tier-4 code that contains class-initialization checks is a smaller win

• Using Spring Boot’s ahead-of-time configuration tool is a big win
• The tool scans for configuration annotations at build time

and generates code to wire up components quickly at run time

• It is, in effect, a Spring-specific condenser

52

Copyright © 2023, Oracle and/or its affiliates

Time-shifting Speculative Optimization Works!
• This overall approach shows great promise
• Significant gains
• Full compatibility
• No new constraints
• No changes to the programming model
• No changes to the specification
• Retains all of Java’s natural dynamism

• Largely a rearrangement of existing JVM components, plus some new policies
• Next steps
• Improve ergonomics of training runs
• Further case studies to improve both mechanisms and policies

53

What’s up First?

54
Copyright © 2023, Oracle and/or its affiliates

More to Come …
• Introduce condensers into the Java Platform
• Evolve the Java Platform Specification and JDK tooling to support

condensation

• Evolve the run-time image format to accommodate new code, data, and
metadata, as necessary

• Explore new ways to shift computation and constrain dynamism
• E.g., Speculative ahead-of-time compilation, linkage, and resolution

• To be delivered incrementally

• Find the right way to bring shiftability into the programming model

• We’re just getting started …

55
Copyright © 2023, Oracle and/or its affiliates

Copyright © 2024, Oracle and/or its affiliates

Project Leyden
Capturing Lightning in a Bottle

Per Minborg (@pminborg)

Java Core Library Team, Oracle

56

57
Copyright © 2023, Oracle and/or its affiliates

58
Copyright © 2023, Oracle and/or its affiliates

59
Copyright © 2023, Oracle and/or its affiliates

https://sketchviz.com/new

digraph G {

 graph [fontname = "Handlee"];
 node [fontname = "Handlee"];
 edge [fontname = "Handlee"];

 bgcolor=transparent;

 start -> t0;
 t0 -> t2
 t2 -> t3
 t3 -> t4
 t4 -> t0 [label="deoptimize"]

 t0 [label="T0 Interpreter (F)"]
 t2 [label="T2 (C1 JIT) (L)"]
 t3 [label="T3 (C1 JIT) (F)"]
 t4 [label="T4 (C2/Graal) (N)"]
 start [shape=Mdiamond];

}

