
Spec-Driven
Development
Using Coding Agents

Arun Gupta
VP, Developer Experience
JetBrains

The problem

Vibe coding a backyard

“Just build me something cool for grillingˮ

Prompt
I want a BBQ, burner, some
cabinets/pantry, and counter
space

Prompt-and-pray

Every change requires tearing
up whatʼs already built

Result
A “vibeˮ that may look ok on the surface but fails
on first “productionˮ dinner (no plumbing and gas
line connection)

Context (assumed)

Contractor assumes your
intention

Hallucination

BBQ arrives but no cutout in
the stone for it

Vibe coding is a one-shot approach

Vibe coding leads to:

No structure No planning

Lots of hallucinated files

Misunderstanding of the codebase

Ignorance of corporate standards Hard to extend

Harder to review Nearly impossible to safely change
once the original mental model is gone

● Vibe coding generates code
based upon your vibe

● You need an intention-first,
code-second approach

DORA report

2025 DORA Report

AI tends to amplify existing
organizational strengths or
weaknesses: good teams get
better; struggling teams may
get worse

The solution

Spec-ing a backyard

“The blueprint is the source of truthˮ

Blueprint
A structured layout defining
exact dimensions of BBQ,
burner, and sink

Validation loops
Contractor checks the
appliance spec sheet with the
frame

Portability

Different mason or stone can
be used with the same spec

Result
“Human-in-the-loopˮ manages
“what ,ˮ contractor manages
“howˮ

Resource lock
Select appliances first to
define the interface for
stone/cabinetry

Utility dependency

Gas, electric and plumbing are
laid before pavers

Run slow to run fast
Invest in specs to accelerate delivery

Mapping the backyard to the codebase

Backyard Construction Software Development Life Cycle

Blueprint The Specification API, DB schema)

Resource Lock Interface definition (type definition)

Utility Dependencies Infrastructure Auth, DB, API gateways)

Sub-contractors (mason, plumber) Specialized agents (test-gen, security, docs)

Contractor validation loops or permits Self-correction loops (linter, test suite)

Building a 2nd backyard Same spec → Java, Go, Python, shared
engineering skills

What is spec-driven development?

Review and refine specs independent of implementation

AI agents generate and validate code against specifications

Human judgment defines "what," AI efficiency delivers "how"

Write natural-language specifications defining what and why

● Intent: desired behavior

● Interfaces: contracts between components

● Requirements: functional and non-functional

● Acceptance criteria: Gherkin format

The SDD workflow

Define WHAT

Specs

Oversees

Human-in-the-loop

Define HOW

Agents

Benefits of spec-driven development

Separates thinking from doing: define intent
before implementation

Shared source of truth: align teams and
agents with a single spec

Human-in-the-loop at high-leverage
points: review specs (strategic), not LOC
(tactical)

Small iterations prevent drift: frequent spec
reviews keep work aligned with goals

Knowledge capture and audit trail:
documents why, not just what

AI as collaborator: let the agent interview you
to arrive at better specs than you'd write alone

Reproducible and consistent outcomes:
same spec → similar code

x.com/karpathy/status/2015887154132746653?s=20

The new SDLC

Spec-driven SDLC

Research

● Existing
codebases and
patterns

● Technical papers
and best
practices

● Agent-generated
research reports

● Stakeholder
interviews and
refinement

● Dependencies
and integration
points

Standardize

● Rules (linting,
ADRs, style
guides)

● Skills (prompts,
templates,
marketplace
tools)

● MCPs and
integrations

● Project structure
and conventions

Define

● Scope boundaries
(in/out,
what/how)

● Requirements
(functional, NFRs,
ADRs)

● Contracts APIs,
schemas, tech
stack)

● UI/UX (designs,
user stories)

● Testing strategy
and acceptance
gates

Loop

● AI-driven code
generation from
specs

● Continuous
validation against
specs

● Iterative
refinement (code
↔ spec)

● Traceability and
change
management

Practical implementation

AGENTS.md

agents.md

● "README for agents" – Clear, predictable place for AI instructions

● Context that persists – AI remembers your project across sessions

● One file, many agents – Works with Claude, GPT, Gemini, any AI

● Zero onboarding time – New AI sessions start productive immediately

● Built-in guardrails – Prevents common mistakes before they happen

Agent Skills – portable engineering
practices

agentskills.io/specification
github.com/arun-gupta/agentic-tictactoe/tree/main/.claude/skills

Portable engineering patterns
Capture solutions once, apply
them across multiple projects
and agents

Standardized implementation
examples
Helm skill demonstrates
consistent approach to writing
Helm charts; similar patterns
for other technologies

Comprehensive skill
categories
Testing patterns, API
integration, deployment scripts,
code review guidelines,
infrastructure-as-code

Domain-specific
specifications
Specs reference standardized
skills, making them more
precise and actionable

Skill repository
Discover, share, and contribute
reusable agent capabilities

Reduces prompt engineering
overhead
Codify best practices as
versioned skills instead of
reinventing prompts per
project

Agent Skill to implement a sub-section

1. Clear context: starts
fresh to avoid context
pollution

2. Read requirements:
extracts from docs/
implementation-plan.md:
● Subsection title and

description
● Files to create/modify
● Subsection tests

(acceptance criteria)
● Dependencies and

prerequisites

3. Create task tracking:
uses TaskCreate to track
● Read requirements
● Implement code
● Write tests
● Run quality checks
● Update documentation
● Commit and push

4. Implement code: follows
all project patterns
● Type hints on all

functions
● Google-style docstrings
● Custom error codes

(@skills/error-handling)
● FastAPI patterns

(@skills/api-endpoint-im
plementation)

6. Run quality checks
MUST PASS
● ruff check and black

--check
● mypy --strict
● pytest (all tests must

pass)

7. Update documentation:
● Add ✅ to subsection

title
● Add implementation

notes
● Mark subsection tests as
✅

● Document test coverage

8. Commit and push:
following
@skills/commit-format:
<type>(<scope>):
Subsection X.Y.Z -
<description>

5. Write tests: following
@skills/test-writing
● Test method format:

test_subsection_X_Y_Z_
requirement()

● Covers all listed
subsection tests

● Arrange-Act-Assert
pattern

Agentic SDLC for SDD

AGENTS.md

Goal, constraints,
priorities, success

criteria

AgentSkills

ToolsPlan → decide → orchestrate

read & interpret invoke skills

What makes spec reusable?

1. Clear scope
boundaries

“in scopeˮ vs “out of
scopeˮ prevents
feature creep

5. Contract-first
approach

JSON schemas for
game state and
moves defined
upfront

2. ADR documented

A2A vs MCP is an
explicit with rationale

6. Acceptance
criteria

testable conditions
with WHEN/THEN for
done-ness

3. Language/
framework agnostic

focuses on behavior
(what), not
implementation
details (how)

7. Tech stack
recommendations

guidance without
prescription

4. Structured
requirements

functional and
non-functional
separated clearly

Making specs testable and unambiguous

Define error codes and schemas for all failed cases

Deterministic pipeline rules with explicit branch handling, fallback strategies, and testable
acceptance criteria for all success and failure scenarios

Add formal acceptance criteria per requirement
● Given-When-Then Gherkin/BDD format)

Explicit data types and constraints
● Confidence (float 0.0 to 1.0
●

Replace soft language with imperatives + measurable values
● Avoid words like typically, expected, strategic, best unless defined
● For example: Replaced "Prioritizes moves", "Recommends", and "Considers" with "MUST select moves in this priority

order" with the exact numeric priority values 100, 90, 80, etc.)

Spec → Implementation

Input
(what to build)

Transformation
(generate the plan)

Output
(how to build)

Spec Implementation planPrompt

Real world application

Key aspects of implementation plan
Direct traceability
to spec
Each phase explicitly maps
back to spec requirements
(core game logic → functional
requirements, AI agent → A2A
architecture decision, testing
→ acceptance criteria),
ensuring implementation
stays aligned with defined
intent

Testing strategy is
comprehensive
Unit, integration, E2E, and
performance testing
explicitly planned, not an
afterthought

Optimized for AI
efficiency
Small, well-scoped units of
work are faster (fit in context
windows), cheaper (focused
generation with higher
success rate), and more
reliable (less drift from
intent)

Risk mitigation
built-in
Identifies specific risks A2A
protocol complexity, state
management) with concrete
mitigation strategies upfront

Validation gates
between phases
Each phase has "Definition
of Done" criteria before
moving forward (e.g., "Core
game logic functional"
before adding AI agent)

Dependency and
resource tracking
Documents what's needed
Claude API access, testing
frameworks) and timeline
estimates per phase

Phased, incremental
delivery
Four clear phases from core
game logic → AI agent →
testing → deployment, with
explicit sequencing and
dependencies

Success metrics
defined
Quantifiable goals
(sub-second response time,
100% win rate against random
play, 95% test coverage)
establish clear targets

Lessons learned
CodeCov integration: code coverage
reporting and tracking to ensure
comprehensive testing across phases

Test-first validation gates: ensure tests exist
and pass before considering any phase or
sub-section complete

GitHub Actions badge: CI/CD status visibility
in the repository to show build and test
health at a glance

Explicit testing scripts per phase:
create dedicated test executables (e.g.,
human_vs_human.py after Phase 2) to
validate functionality independently before
moving forward

Capture engineering as Agent Skills:
document reusable patterns and solutions as
portable skills that can be applied across
future projects

Sub-section test coverage enforcement:
each spec sub-section must have
corresponding test cases explicitly defined
and validated, not assumed

Agent drift

Implementing UI/UX requirements
from spec
Design often requires tight collaboration between designer and frontend
developers → specification facilitate discussion and collaboration

MCP is perfect to bridge the gap between existing tools and agentic AI

Long-term: requires communication between design team
and developer in case of updates

In Figma right click → copy link to selection and paste to agent to generate a
ui-spec.md

For ui dev work, mention ui-spec or refer to it in the AGENTS.md file

How to make this agent friendly → figma-mcp (or similar)

Design-work usually yields some kind of spec (fonts, colors, spacing, …)

Whatʼs happening in spec-driven
development space?

Landscape

● Emerging tools: Spec-kit,
AgentOS, Kiro, AntiGravity,
Tessl

● Growing adoption across
greenfield and brownfield
projects

Open questions

● How does SDD integrate
with TDD/BDD/DDD?

● Who maintains specs as
code evolves?

● How do multiple agents
coordinate on parallel work?

Next challenges

● Drift prevention strategies
● Multi-agent orchestration

patterns

SPECDRIVEN DEVELOPMENT IS

 Writing down what your AI should know AGENTS.md),
 what it should do (skills),

 and what you're building (implementation plan),
 so you can stop explaining and start building

Key takeaways

The 3 separations of SDD

1. Separate thinking from doing → Specs define
"what," agents define "how"

2. Separate strategy from tactics → Review specs,
not lines of code

3. Separate patterns from projects → Build
portable skills, not one-off prompts

The 3 practices that matter

1. Invest upfront, accelerate delivery → "Run slow
to run fast"

2. Build in phases with gates → Validate early,
prevent drift

3. Let AI interview you → Better specs through
collaboration

Remember
AI amplifies what you already have, make sure you're amplifying the right things.

Thank you!

