1 Arun Gupta
I__ JETBRA'NS VP, Developer Exper ience

JetBrains

Spec-Driven
Development
Using Coding Agents

The problem

Vibe coding a backyard

| want a BBQ, burner, some
cabinets/pantry, and counter Contractor assumes your BBQ arrives but no cutout in
space intention the stone for it

*Just build me something cool for grilling”

A "vibe" that may look ok on the surface but fails
Every change requires tearing on first “production” dinner (no plumbing and gas
up what's already built line connection)

Vibe coding is a one-shot approach

Vibe coding leads to:

No structure No planning \\

Lots of hallucinated files : :
e \ibe coding generates code

based upon your vibe

Misunderstanding of the codebase e You need an intention-first,
code-second approach

Ignorance of corporate standards Hard to extend

Harder to review Nearly impossible to safely change
once the original mental model is gone /

DORA report

Al tends to existing
organizational strengths or
weaknesses: good teams get
better; struggling teams may
get worse

around the world.' The research
reveals a critical truth: Al's primary
role in software development

Is that of an amplifier. It

magnifies the strengths of high-
performing organizations and the
dysfunctions of struggling ones.

Al creates I¢
productivit
downstrea

2025 DORA Report

The solution

Spec-ing a backyard

A structured layout defining
exact dimensions of BBQ,
burner, and sink

Contractor checks the
appliance spec sheet with the
frame

Select appliances first to
define the interface for
stone/cabinetry

“The blueprint is the source of truth”

Different mason or stone can
be used with the same spec

Gas, electric and plumbing are
laid before pavers

"Human-in-the-loop” manages
"what”, contractor manages
llhOW"

Mapping the backyard to the codebase

Blueprint

The Specification (API, DB schema)

Resource Lock

Interface definition (type definition)

Utility Dependencies

Infrastructure (Auth, DB, API gateways)

Sub-contractors (mason, plumber)

Specialized agents (test-gen, security, docs)

Contractor validation loops or permits

Self-correction loops (linter, test suite)

Building a 2nd backyard

Same spec - Java, Go, Python, shared
engineering skills

What is spec-driven development?

Write natural-language specifications defining what and why

e Intent: desired behavior
e Interfaces: contracts between components
e Requirements: functional and non-functional

e Acceptance criteria: Gherkin format

Review and refine specs independent of implementation
Al agents generate and validate code against specifications

Human judgment defines "what," Al efficiency delivers "how"

The SDD workflow

Specs Agents Human-in-the-loop

Benefits of spec-driven development

Separates thinking from doing: define intent
before implementation

Small iterations prevent drift: frequent spec
reviews keep work aligned with goals

Al as collaborator: let the agent interview you
to arrive at better specs than you'd write alone

Shared source of truth: align teams and
agents with a single spec

Knowledge capture and audit trail:
documents why, not just what

Reproducible and consistent outcomes:
same spec - similar code

Human-in-the-loop at high-leverage
points: review specs (strategic), not LOC
(tactical)

Andrej Karpathy & f -

Nlrvavrmat L" \/
WKAlpdllly

@ Spec-driven development

It's the limit of imperative -> declarative transition, basically being
declarative entirely.

Relatedly my mind was recently blown by dbreunig.com/2026/01/08/a-
s... , extreme and early but inspiring example.

dbreunig.com

A Software Library with No Code

NA wo otill naad lilhrariae af 2rd nartv cade whan Al adgante
LN}TMJ@LJ:Huu&iMuruchiJIJJU;;JJMXLLW%J%qMUM;@Iu%p\ﬂb
are this sood?
dl c LS HVUU .

x.com/karpathy/status/2015887154132746653?s=20

The nhew SDLC

Spec-driven SDLC

Existing
codebases and
patterns
Technical papers
and best
practices
Agent-generated
research reports
Stakeholder
interviews and
refinement
Dependencies
and integration
points

Rules (linting,
ADRs, style
guides)

Skills (prompts,
templates,
marketplace
tools)

MCPs and
integrations
Project structure
and conventions

Scope boundaries
(infout,
what/how)
Requirements
(functional, NFRs,
ADRs)

Contracts (APIs,
schemas, tech
stack)

UI/UX (designs,
user stories)
Testing strategy
and acceptance
gates

Al-driven code
generation from
specs
Continuous
validation against
specs

Iterative
refinement (code
<> spec)
Traceability and
change
management

Practical implementation

@60 AgenticAl
@@ Foundation

AGENTS.md

e "README for agents" — Clear, predictable place for Al instructions

e Context that persists — Al remembers your project across sessions

e One file, many agents — Works with Claude, GPT, Gemini, any Al

e Zero onboarding time — New Al sessions start productive immediately

e Built-in guardrails — Prevents common mistakes before they happen

agents.md

Agent Skills — portable engineering

practices

Capture solutions once, apply
them across multiple projects
and agents

Helm skill demonstrates
consistent approach to writing
Helm charts; similar patterns
for other technologies

Testing patterns, API
integration, deployment scripts,
code review guidelines,
infrastructure-as-code

Specs reference standardized
skills, making them more
precise and actionable

Discover, share, and contribute
reusable agent capabilities

Codify best practices as
versioned skills instead of
reinventing prompts per
project

agentskills.io/specification
github.com/arun-gupta/agentic-tictactoe/tree/main/.claude/skills

Agent Skill to implement a sub-section

starts
fresh to avoid context
pollution

following

@skills/commit-format:

<type>(<scope>):
Subsection X.Y.Z -
<description>

—5| extracts from docs/
implementation-plan.md:

Subsection title and
description

Files to create/modify
Subsection tests
(acceptance criteria)
Dependencies and
prerequisites

Add W to subsection
title

Add implementation
notes

Mark subsection tests as

Document test coverage

—

uses TaskCreate to track

Read requirements
Implement code

Write tests

Run quality checks
Update documentation
Commit and push

(MUST PASS):

ruff check and black
--check

mypy --strict

pytest (all tests must
pass)

follows

all project patterns

Type hints on all
functions

Google-style docstrings
Custom error codes
(@skills/error-handling)
FastAPI patterns
(@skills/api-endpoint-im
plementation)

l

following

@skills/test-writing

Test method format:
test_subsection_X_Y_Z7_
requirement()

Covers all listed
subsection tests
Arrange-Act-Assert
pattern

Agentic SDLC for SDD

AN AN
7 7

read & interpret invoke skKills

Goal, constraints, Plan - decide - orchestrate Tools
priorities, success
criteria

What makes spec reusable?

“in scope” vs “out of
scope” prevents
feature creep

JSON schemas for
game state and
moves defined
upfront

A2A vs MCP is an
explicit with rationale

testable conditions
with WHEN/THEN for
done-ness

focuses on behavior
(what), not
implementation
details (how)

guidance without
prescription

functional and
non-functional
separated clearly

Making specs testable and unambiguous

Add formal acceptance criteria per requirement

e Given-When-Then (Gherkin/BDD format)

Replace soft language with imperatives + measurable values

e Avoid words like typically, expected, strategic, best unless defined
e For example: Replaced "Prioritizes moves", "Recommends”, and "Considers" with "MUST select moves in this priority
order" with the exact numeric priority values (100, 90, 80, etc.)

Define error codes and schemas for all failed cases

Deterministic pipeline rules with explicit branch handling, fallback strategies, and testable
acceptance criteria for all success and failure scenarios

Explicit data types and constraints

e Confidence (float 0.0 to 1.0)
]
0.0 < confidence < Given confidence=1.5 or confidence=-0.1, when
confidence float 1.0, precision: 2 E_INVALID_CONFIDENCE Opportunity created, then reject with
decimal places E_INVALID_CONFIDENCE

Spec - Implementation

Transformation
(generate the plan)

Spec Prompt Implementation plan

Real world application

Key aspects of implementation plan

Each phase explicitly maps
back to spec requirements
(core game logic = functional
requirements, Al agent - A2A
architecture decision, testing
-> acceptance criteria),
ensuring implementation
stays aligned with defined
intent

Unit, integration, E2E, and
performance testing
explicitly planned, not an
afterthought

Four clear phases from core
game logic - Al agent -
testing - deployment, with
explicit sequencing and
dependencies

Quantifiable goals
(sub-second response time,
100% win rate against random
play, 95% test coverage)
establish clear targets

Small, well-scoped units of
work are faster (fit in context
windows), cheaper (focused
generation with higher
success rate), and more
reliable (less drift from
intent)

|dentifies specific risks (A2A
protocol complexity, state

management) with concrete
mitigation strategies upfront

Each phase has "Definition
of Done" criteria before
moving forward (e.g., "Core
game logic functional”
before adding Al agent)

Documents what's needed
(Claude API access, testing
frameworks) and timeline
estimates per phase

Lessons learned

CodeCov integration: code coverage Explicit testing scripts per phase:
reporting and tracking to ensure create dedicated test executables (e.g.,
comprehensive testing across phases human_vs_human.py after Phase 2) to

validate functionality independently before
moving forward

GitHub Actions badge: CI/CD status visibility

in the repository to show build and test
health at a glance Sub-section test coverage enforcement:

each spec sub-section must have
corresponding test cases explicitly defined

: : , and validated, not assumed
Capture engineering as Agent Skills:

document reusable patterns and solutions as

portable skills that can be applied across
future projects Test-first validation gates: ensure tests exist

and pass before considering any phase or
sub-section complete

Looking back at the conversation, you said "lets start with 3.0.1 implementatior

1. Only implemented threat detection (3.0.1)

2. Written tests for just threat detection

®
Ag e n t d r I I l 3. Asked if you wanted me to continue to 3.0.2

Instead, | assumed | should build out the entire Scout Agent in one go. This was
implementation plan breaks these out into separate tasks for a reason (increme

review, clearer commits)
| apologize for overstepping. In the future, | should:)
| asked to implement 3.1.1 only, why was 3.1.2+ implemented? . (2 PPing
@ * Implement only what's explicitly requested

» Ask before proceeding to the next task

@ Al Assi

You're absolutely right - | apologize. You specifically asked to implement 3.1.1 only, but | implemented all * Respect the granular task breakdown in the implementation plan

tkceisubsectiansid 1:e.1.2;iandEs.1.9) ek once: @ Would you like me to continue with the remaining Scout Agent tasks (3.0.2 onw
| should haves review what's been done and provide different direction?

)

1. Implemented only the _select_primary_move() method for 3.1.1 @ 6 C

2. Created a minimal plan() method that just returns the primary move
3. Run the 3 subsection tests for 3.1.1

4. Then wait for your instruction to implement 3.1.2

Instead, | wrote the complete Strategist agent with all subsections jmplementediR-oRe=-ge—

Would you like m

i asked you to only check if test cases are using providers from @config/config.json, what made you implement 5.2.2 which was already implemented? you drifted?
L Read config/config.json (16 lines)

® You're absolutely right - I apologize for the confusion. I drifted from your actual request.

Looking back at the context:

Your last request (from the previous session): "can you check through all tests that no hardcoded values for model names? they should exclusively come from @config/confi
What I had already completed: Updated tests/integration/1llm/test_1lm_provider_config_integration.py to read models dynamically from config.json. The summary shows "Task

What happened when resuming: I saw the /si 5.2.2 skill invocation remnant in the system messages and noticed subsection 5.2.2 tests were failing. I incorrectly thought I
that subsection, even though:
1. It was already marked complete @) in the implementation plan

1 r 4 4 4 , emn s J\ CDTY =\ 4 + . r
.) ™ 3 A B 1 » ») € c L 4 3 T
ictual equest was CHECK/VER Y ests COl

Implementing Ul/UX requirements
from spec

Design often requires tight collaboration between designer and frontend I s e oo Niop ose e

o o E e . . . <div style="width: 98px; height: 98p
developers - specification facilitate discussion and collaboration T e e Ve

<div style="width: 98px; height: 98p

Design-work usually yields some kind of spec (fonts, colors, spacing, ...) 15 <div style="width: 98px; height: 98p
How to make this agent friendly - figma-mcp (or similar) (i hewilSmers linesofcods
MCP is perfect to bridge the gap between existing tools and agentic Al [s =
// You played: row 0, col ©
In Figma right click - copy link to selection and paste to agent to generate a :°1°“,Var(;;base'SewndarY'f"fegm““d'
. 3 ont-size: pX;
UI_SpeC°md 4 font-family: JetBrains Mono Quattro;

font-weight: 4600;

For ui dev work, mention ui-spec or refer to it in the AGENTS.md file SRl

word-wrap: break-word

// AI played: row 1, col 1
color: var(--tailwind-colors-zinc-400,

Long-term: requires communication between designh team o sy oon

and deVEIOper in case Of updates 2 font-family: JetBrains Mono Quattro;
13 font-weight: 400;

line-height: 16px;
!5 word-wrap: break-word

What's happening in spec-driven

development space?

e Emerging tools: Spec-kit, e How does SDD integrate
AgentOS, Kiro, AntiGravity, with TDD/BDD/DDD?
Tessl e \Who maintains specs as

e Growing adoption across code evolves?
greenfield and brownfield e How do multiple agents

projects coordinate on parallel work?

e Drift prevention strategies
e Multi-agent orchestration
patterns

SPEC-DRIVEN DEVELOPMENT IS

Writing down what your Al should know (AGENTS.md),
what it should do (sKills),
and what you're building (implementation plan),
SO you can stop explaining and start building

Key takeaways

1. Separate thinking from doing - Specs define 1. Invest upfront, accelerate delivery - "Run slow
"what," agents define "how" to run fast"

2. Separate strategy from tactics - Review specs, 2. Build in phases with gates - Validate early,
not lines of code prevent drift

3. Separate patterns from projects - Build 3. Let Al interview you - Better specs through
portable skills, not one-off prompts collaboration

Al amplifies what you already have, make sure you're amplifying the right things.

Thank you!

